Algebraic Tolopology and Quantum Field Theory
代数拓扑学和量子场论
基本信息
- 批准号:0210822
- 负责人:
- 金额:$ 20.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2007-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0210822Dennis P. SullivanOne of the effective techniques of mathematics for dealing with problems of several parameters or dimensions is combinatorial, or algebraic, topology. In that field, geometric objects, called cycles, associated to constraintsare grouped into deformation or homology classes which then combine and decompose in various combinations to define algebraic structures of such richness to provoke a theoretical study in the own right of a variety of algebraic structures. Recently some of these structures have appeared in theoretical physics in the attempted formalism to describe term by term models for quantum phenomena.In collaboration, the principal investigator has recently discovered related algebraic topology structures in the space of strings (open and closed) filling up a space (time) model. This award will sponsor investigations to conceptually clarify the occurance of algebraic topology in theoretical quantum physics and to relate the results ofthese investigations to new string algebra.
DMS-0210822 Dennis P. Sullivan处理多个参数或维度问题的有效数学技巧之一是组合拓扑学或代数拓扑学。 在该领域中,几何对象,称为循环,与constraintsgrouped到变形或同源类,然后联合收割机和分解在各种组合,以定义代数结构的丰富性,挑起理论研究在自己的权利,各种代数结构。最近,这些结构中的一些已经出现在理论物理学中,试图以形式主义来描述量子现象的逐项模型。在合作中,首席研究员最近发现了填补空间(时间)模型的弦(开和闭)空间中的相关代数拓扑结构。 该奖项将赞助调查,从概念上澄清理论量子物理学中代数拓扑的发生,并将这些调查的结果与新的弦代数联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Sullivan其他文献
Practice Guidelines for the Management of Febrile Infants Less Than 90 Days of Age at the Ambulatory Network of a Large Pediatric Health Care System in the United States: Summary of New Evidence
美国大型儿科医疗保健系统流动网络中 90 天以下发热婴儿的管理实践指南:新证据摘要
- DOI:
10.1177/000992280404300102 - 发表时间:
2004 - 期刊:
- 影响因子:1.6
- 作者:
Athena P. Kourtis;Dennis Sullivan;U. Sathian - 通讯作者:
U. Sathian
The Hauptvermutung Book
总管理书
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
A. J. Casson;Dennis Sullivan;M. Armstrong;Colin Rourke;G. Cooke;Andrew Ranicki - 通讯作者:
Andrew Ranicki
Firefly
- DOI:
10.1080/10282580.2012.681155 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dennis Sullivan - 通讯作者:
Dennis Sullivan
Opt-Out as a Recruitment Method for Enhancing Participation in Research With Chronically and Seriously Ill Patients (S724)
- DOI:
10.1016/j.jpainsymman.2012.10.141 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:
- 作者:
Kimberly Garner;Richard Dennis;Leanne Lefler;Prasad Padala;Kalpana Padala;Patricia Dubbert;Melinda Bopp;Dennis Sullivan;JoAnn Kirchner - 通讯作者:
JoAnn Kirchner
Dennis Sullivan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Sullivan', 18)}}的其他基金
Methods of deRham Topology Applied to Nonlinear Problems
deRham 拓扑方法应用于非线性问题
- 批准号:
1309228 - 财政年份:2013
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
- 批准号:
0757245 - 财政年份:2008
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
Algebraic Topology & Quantum Field Theory
代数拓扑
- 批准号:
0505581 - 财政年份:2005
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
- 批准号:
0244100 - 财政年份:2003
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
Combinatorial Model for Geometry and Analysis Based on the Algebraic Topology of Closed Curves
基于闭曲线代数拓扑的几何与分析组合模型
- 批准号:
9975527 - 财政年份:1999
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Structures
数学科学:几何结构
- 批准号:
9529369 - 财政年份:1996
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems, Geometry and Quasiconformal Homeomorphisms
数学科学:动力系统、几何和拟共形同态
- 批准号:
9204069 - 财政年份:1992
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems, Geometry, and Quasiconformal Homeomorphisms
数学科学:动力系统、几何和拟共形同态
- 批准号:
8905351 - 财政年份:1989
- 资助金额:
$ 20.07万 - 项目类别:
Continuing Grant
Acquisition of Mathematical Sciences Research Equipment
数学科学研究设备购置
- 批准号:
8304222 - 财政年份:1983
- 资助金额:
$ 20.07万 - 项目类别:
Standard Grant