Algebraic Topology & Quantum Field Theory

代数拓扑

基本信息

  • 批准号:
    0505581
  • 负责人:
  • 金额:
    $ 19.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

In this project we search for an algebraic definition that will serve the mathematician working in several of those branches touched by quantum field theory. The idea is to combine ideas from algebra and topology that serve to describe a manifold with its Poincare' duality. Applying Hochshild constructions leads to algebraic models of the free loop space of the manifold and the rich supply of operations from string topology. The BV formalism appears and solutions of the quantum master equation hopefully appear in several contexts such as differential, symplectic and holomorphic topology. The motivation for this project at a more practical level is that several extremely interesting mathematical discussions are united in the language of theoretical physics, namely quantum field theory, but there are not precise mathematical concepts which provide such a synthesis for the working mathematician. Also once we have such underlying mathematical concepts, mathematicians will be able to develop their structure in a systematic manner and go deeper. I do not expect this work to impact the real physical examples of quantum field theory, but rather the converse-we use quantum field theory to help mathematicians by merely trying to define some part of it.
在这个项目中,我们寻找一个代数定义,这将有助于数学家在量子场论涉及的几个分支工作。 这个想法是联合收割机的想法,从代数和拓扑学,服务于描述一个流形与庞加莱对偶。应用Hochshild结构导致代数模型的自由循环空间的流形和丰富的供应操作弦拓扑。BV形式主义的出现和解决方案的量子主方程有望出现在几个上下文中,如微分,辛和全纯拓扑。这个项目在更实际的层面上的动机是,几个非常有趣的数学讨论在理论物理学的语言中统一起来,即量子场论,但没有精确的数学概念为工作数学家提供这样的综合。而且,一旦我们有了这样的基本数学概念,数学家就能够以系统的方式发展它们的结构,并深入研究。 我并不期望这项工作会影响量子场论的真实的物理实例,相反,我们使用量子场论来帮助数学家,只是试图定义它的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Sullivan其他文献

Practice Guidelines for the Management of Febrile Infants Less Than 90 Days of Age at the Ambulatory Network of a Large Pediatric Health Care System in the United States: Summary of New Evidence
美国大型儿科医疗保健系统流动网络中 90 天以下发热婴儿的管理实践指南:新证据摘要
  • DOI:
    10.1177/000992280404300102
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Athena P. Kourtis;Dennis Sullivan;U. Sathian
  • 通讯作者:
    U. Sathian
The Hauptvermutung Book
总管理书
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. J. Casson;Dennis Sullivan;M. Armstrong;Colin Rourke;G. Cooke;Andrew Ranicki
  • 通讯作者:
    Andrew Ranicki
String Topology
串拓扑
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Moira Chas;Dennis Sullivan
  • 通讯作者:
    Dennis Sullivan
Firefly
  • DOI:
    10.1080/10282580.2012.681155
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dennis Sullivan
  • 通讯作者:
    Dennis Sullivan
Opt-Out as a Recruitment Method for Enhancing Participation in Research With Chronically and Seriously Ill Patients (S724)
  • DOI:
    10.1016/j.jpainsymman.2012.10.141
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kimberly Garner;Richard Dennis;Leanne Lefler;Prasad Padala;Kalpana Padala;Patricia Dubbert;Melinda Bopp;Dennis Sullivan;JoAnn Kirchner
  • 通讯作者:
    JoAnn Kirchner

Dennis Sullivan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Sullivan', 18)}}的其他基金

Methods of deRham Topology Applied to Nonlinear Problems
deRham 拓扑方法应用于非线性问题
  • 批准号:
    1309228
  • 财政年份:
    2013
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: How the Algebraic Topology of Closed Manifold Relates to Strings and 2D Quantum Field Theory
FRG:协作研究:闭流形的代数拓扑如何与弦和二维量子场论相关
  • 批准号:
    0757245
  • 财政年份:
    2008
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Moduli Spaces of Riemann Surfaces and String Topology
FRG:协作研究:黎曼曲面和弦拓扑的模空间
  • 批准号:
    0244100
  • 财政年份:
    2003
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
Algebraic Tolopology and Quantum Field Theory
代数拓扑学和量子场论
  • 批准号:
    0210822
  • 财政年份:
    2002
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
Combinatorial Model for Geometry and Analysis Based on the Algebraic Topology of Closed Curves
基于闭曲线代数拓扑的几何与分析组合模型
  • 批准号:
    9975527
  • 财政年份:
    1999
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Structures
数学科学:几何结构
  • 批准号:
    9529369
  • 财政年份:
    1996
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamical Systems, Geometry and Quasiconformal Homeomorphisms
数学科学:动力系统、几何和拟共形同态
  • 批准号:
    9204069
  • 财政年份:
    1992
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Dynamical Systems, Geometry, and Quasiconformal Homeomorphisms
数学科学:动力系统、几何和拟共形同态
  • 批准号:
    8905351
  • 财政年份:
    1989
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Continuing Grant
Acquisition of Mathematical Sciences Research Equipment
数学科学研究设备购置
  • 批准号:
    8304222
  • 财政年份:
    1983
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Continuing Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
FET: SMALL: Quantum algorithms and complexity for quantum algebra and topology
FET:小:量子算法以及量子代数和拓扑的复杂性
  • 批准号:
    2330130
  • 财政年份:
    2024
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
Disorder, Topology and Frustration in Quantum Materials
量子材料中的无序、拓扑和挫败
  • 批准号:
    2310318
  • 财政年份:
    2023
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Continuing Grant
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
  • 批准号:
    2882485
  • 财政年份:
    2023
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Studentship
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
  • 批准号:
    2316892
  • 财政年份:
    2023
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
Characterizing Finite-Temperature Topology Via Quantum Computation
通过量子计算表征有限温度拓扑
  • 批准号:
    2310656
  • 财政年份:
    2023
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Standard Grant
Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
  • 批准号:
    23K03243
  • 财政年份:
    2023
  • 资助金额:
    $ 19.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了