Robust Output Sensitive Algorithms for Subanalytic Geometry

亚解析几何的鲁棒输出敏感算法

基本信息

  • 批准号:
    0211458
  • 负责人:
  • 金额:
    $ 9.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2005-12-31
  • 项目状态:
    已结题

项目摘要

The investigator aims to complete the nascent theory ofoutput-sensitive algorithms in real algebraic geometry.Output-sensitive in this context means that the complexity of theunderlying algorithm depends mainly on intrinsic geometricparameters, e.g., the number of connected components of theunderlying solution set, as opposed to extrinsic parameters likethe degrees of the input polynomials. Such algorithms are fasterthan the traditional methods of computational algebra by a factorexponential in the dimension, but have so far been discoveredonly in various isolated contexts. So a unified algorithmicapproach has a broad impact. Furthermore, the underlyingapproach takes numerical conditioning into account from theoutset, thus providing algorithms that are certifiably preciseeven when applied to approximate data. Another novelty is thatthe underlying theory applies in the even broader arena of realand p-adic analytic functions. The algorithmic aspects of p-adicanalytic functions are almost completely unexplored, so asecondary focus of this project is to elaborate and apply thisnew theory to equation-solving over finite fields and motivicintegration. The investigator combines advanced techniques from numericalanalysis and algebraic geometry to provide a new approach to afundamental problem occuring in many applications: solvinganalytic inequalities. For example, finding the optimalallocation of resources in a large organization (e.g., an army,an airline, or a large business) has long been known to reduce tosolving linear inequalities. From a different direction, it isknown that the complexity of certain neural net architectures(which are useful in training automated bomb-sniffers and patternrecognition systems) depends critically on understanding thesolutions of nonlinear polynomial inequalities. Both theseexamples are special cases of analytic inequalities, and thisproject provides new algorithms for their solution that aremagnitudes faster than current algorithms. Furthermore, thesenew algorithms provide certifiably precise solutions --- afeature which is especially important when facing uncertainphysical data. Another novel aspect is the principalinvestigator's recent discovery that the underlying techniquesapply to an even broader context, which can provide new solutionsto many problems in the design of cryptosystems.
研究者的目标是完成真实的代数几何中的输出敏感算法的新生理论。在这种情况下,输出敏感意味着底层算法的复杂性主要取决于内在的几何参数,例如,底层解决方案集的连接组件的数量,而不是外部参数,如输入多项式的次数。 这样的算法比传统的计算代数方法在维度上快一个因子指数,但到目前为止只在各种孤立的情况下被发现。 因此,统一的算法方法具有广泛的影响。 此外,基本的方法从一开始就考虑到数值条件,从而提供了即使应用于近似数据也可以证明精确的算法。 另一个新奇是,基本理论适用于更广泛的实和p-adic解析函数的竞技场。 p-adicanalytic函数的算法方面几乎完全未被探索,因此本项目的一个经济重点是阐述和应用这一新理论来求解有限域上的方程和动机积分。 调查员结合了numericalanalysis和代数几何的先进技术,提供了一种新的方法来解决许多应用中出现的基本问题:solvinganalytic不等式。 例如,在大型组织中找到资源的最佳分配(例如,军队、航空公司或大型企业)长期以来被认为可以简化为求解线性不等式。 从另一个角度来看,我们知道某些神经网络架构(在训练自动炸弹嗅探器和模式识别系统中很有用)的复杂性关键取决于对非线性多项式不等式的解的理解。 这两个例子都是解析不等式的特殊情况,本项目为它们的解提供了新的算法,比现有的算法快得多。 此外,这些新算法提供了可证明的精确解-这一特性在面对不确定的物理数据时尤为重要。 另一个新颖的方面是主要研究者最近发现,底层技术适用于更广泛的背景,这可以为密码系统设计中的许多问题提供新的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Maurice Rojas其他文献

J Maurice Rojas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Maurice Rojas', 18)}}的其他基金

AF: Medium: Collaborative Research: Arithmetic Geometry Methods in Complexity and Communication
AF:媒介:协作研究:复杂性和通信中的算术几何方法
  • 批准号:
    1900881
  • 财政年份:
    2019
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Sparse Polynomials, Complexity, and Algorithms
AF:媒介:协作研究:稀疏多项式、复杂性和算法
  • 批准号:
    1409020
  • 财政年份:
    2014
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Continuing Grant
Texas Algebraic Geometry Seminar (TAGS) 2009; College Station, TX; Spring 2009
德克萨斯代数几何研讨会(TAGS)2009;
  • 批准号:
    0915235
  • 财政年份:
    2009
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Standard Grant
MCS: Randomization in Algorithmic Fewnomial Theory Over Complete Fields
MCS:完整域上算法少项理论的随机化
  • 批准号:
    0915245
  • 财政年份:
    2009
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Standard Grant
CAREER: Complexity, Reality, and Rationality in Large Nonlinear Equation Solving
职业:大型非线性方程求解的复杂性、现实性和合理性
  • 批准号:
    0349309
  • 财政年份:
    2004
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9508964
  • 财政年份:
    1995
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Fellowship Award

相似海外基金

Assessment of Ionic Tracer Reaction Rate Variability for Geothermal Energy Output Prediction
地热能输出预测的离子示踪剂反应速率变异性评估
  • 批准号:
    24K17640
  • 财政年份:
    2024
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
  • 批准号:
    24K17329
  • 财政年份:
    2024
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Simultaneous Transmit-Receive and Full-Duplex Millimeter-Wave Massive Multiple-Input and Multiple-Output (MIMO) Systems
SBIR 第一阶段:同时发送-接收和全双工毫米波大规模多输入多输出 (MIMO) 系统
  • 批准号:
    2322297
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Standard Grant
Modulation of descending brainstem output in the spinal cord during locomotion.
运动过程中脊髓下行脑干输出的调节。
  • 批准号:
    489770
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Operating Grants
The role of cerebellar output in the control of motor coordination
小脑输出在运动协调控制中的作用
  • 批准号:
    10601599
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
Joint development of COIL, an output-specific medical English language learning model in a cross-reality space
联合开发跨现实空间中特定输出的医学英语学习模型 COIL
  • 批准号:
    23H00645
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Multiple input multiple output (MIMO) radar processing module for significantly enhanced detection of severe weather and disaster management
SBIR 第一阶段:多输入多输出 (MIMO) 雷达处理模块,可显着增强对恶劣天气和灾害管理的检测
  • 批准号:
    2313223
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Standard Grant
Transcriptional regulation over neurogenesis of cortical output neuron segmental identity and diversity
皮质输出神经元节段同一性和多样性的神经发生的转录调控
  • 批准号:
    10638147
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
Measurement of the methane of output of individual cattle when housed and grazed.
测量饲养和放牧时个体牛的甲烷排放量。
  • 批准号:
    BB/X019764/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了