CAREER: Complexity, Reality, and Rationality in Large Nonlinear Equation Solving
职业:大型非线性方程求解的复杂性、现实性和合理性
基本信息
- 批准号:0349309
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this Career project, the investigator studies problemsthat involve an interplay between algebraic geometry, numbertheory, and complexity theory. Specific projects include: (1) A new generation of fast randomized algorithms for real root counting, allowing analytic as well as algebraic equations, (2) Further explorations into algorithmic fewnomial theory over the real and p-adic numbers, (3) A deeper analysis of numerical conditioning of random sparse polynomial systems, (4) Sharpened quantitative results for rational solutions of straight-line programs, (5) Further exploration of number-theoretic approaches to the P vs. NP question. Solving equations is ubiquitous in applications, cuttingacross many areas of engineering and science: A brief listincludes drug design, faster and more reliable methods for radarimaging and geometric modelling, and more reliable and efficientapproaches to robotics and autonomous vehicles. The investigatordevelops methods for problems related to the solution ofpolynomial equations, with an eye toward these applications. Healso actively recruits students from schools in poorer areas ofTexas (with large African-American and Hispanic populations) tohelp disadvantaged students and channel more bright young peopleinto the computational sciences. He also continues work onrelated software, so that the broader public can benefit from thediscoveries of this project.
在这个职业项目中,研究者研究涉及代数几何、数论和复杂性理论之间相互作用的问题。具体项目包括:(1)新一代的实数根计数快速随机算法,允许解析方程和代数方程;(2)对实数和P进数的算法多项式理论的进一步探索;(3)对随机稀疏多项式系统的数值条件的更深入分析;(4)对直线规划有理解的定量结果的强化;(5)对P与NP问题的数论方法的进一步探索。求解方程在应用中无处不在,跨越了许多工程和科学领域:一个简短的列表包括药物设计,更快更可靠的雷达成像和几何建模方法,以及更可靠更有效的机器人和自动驾驶汽车方法。研究者开发了与多项式方程解有关的问题的方法,着眼于这些应用。他还积极从德州贫困地区(非裔美国人和西班牙裔人口众多)的学校招收学生,帮助贫困学生,引导更多聪明的年轻人进入计算科学领域。他还继续开发相关软件,以便更广泛的公众可以从这个项目的发现中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J Maurice Rojas其他文献
J Maurice Rojas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J Maurice Rojas', 18)}}的其他基金
AF: Medium: Collaborative Research: Arithmetic Geometry Methods in Complexity and Communication
AF:媒介:协作研究:复杂性和通信中的算术几何方法
- 批准号:
1900881 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Sparse Polynomials, Complexity, and Algorithms
AF:媒介:协作研究:稀疏多项式、复杂性和算法
- 批准号:
1409020 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Texas Algebraic Geometry Seminar (TAGS) 2009; College Station, TX; Spring 2009
德克萨斯代数几何研讨会(TAGS)2009;
- 批准号:
0915235 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
MCS: Randomization in Algorithmic Fewnomial Theory Over Complete Fields
MCS:完整域上算法少项理论的随机化
- 批准号:
0915245 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Robust Output Sensitive Algorithms for Subanalytic Geometry
亚解析几何的鲁棒输出敏感算法
- 批准号:
0211458 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9508964 - 财政年份:1995
- 资助金额:
$ 40万 - 项目类别:
Fellowship Award
相似海外基金
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
- 批准号:
DE240100502 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
- 批准号:
23K23857 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
- 批准号:
BB/Y008898/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant