ITR: Sublinear Algorithms for Massive Data Sets

ITR:海量数据集的次线性算法

基本信息

项目摘要

Manipulating large scale data sources leads to question what are efficient algorithms. Even linear time algorithms may be much too slow on truly massive data. Similarly, even using linear spaceto store the data may be unreasonable when input data that is generated is far too voluminous. Applications abound where these constraints are natural. For example, data stores that archive web pages on the Internet, all telephone call records or molecular sequences are massive, and even linear time algorithms to process them prove slow. Data sources such as network traffic measurements are voluminous and rarely get archived; instead, it is desirable to process them as they are generated to obtain suitable sublinear space representations. Two approaches to building sublinear algorithms are sampling and streaming. In sampling, algorithms examine a (small) subset of input and solve problems of interest in sublinear time, typically to some provable approximation. While sampling has been studied in Probability and Statistics for decades, truly sublinear algorithms for sophisticated tasks such as clustering and building fourier representations have only recently been obtained. The algorithms should have solid theoretical foundations, and should be amenable to analysis using rigorous theoretical tools. However, some of the algorithms will be also implemented and subjected to experimental evaluation. It is expected that the algorithms developed in the context of this projectwill have significant practical impact.
操作大规模数据源会导致问题什么是有效的算法。即使是线性时间算法在真正的海量数据上也可能太慢。同样,当生成的输入数据太多时,即使使用线性空间来存储数据也可能是不合理的。在这些限制是自然的情况下,应用程序比比皆是。例如,将互联网上的网页、所有电话记录或分子序列存档的数据存储是海量的,甚至处理它们的线性时间算法也被证明是缓慢的。数据源,如网络流量测量是大量的,很少得到存档;相反,它是可取的,以处理它们,因为它们产生,以获得合适的次线性空间表示。构建次线性算法的两种方法是采样和流。在采样中,算法检查输入的(小)子集,并在次线性时间内解决感兴趣的问题,通常是某种可证明的近似。虽然采样已经在概率和统计学中研究了几十年,但用于复杂任务(如聚类和构建傅立叶表示)的真正次线性算法直到最近才获得。这些算法应该有坚实的理论基础,并且应该能够使用严格的理论工具进行分析。然而,一些算法也将被实现并进行实验评估。预计在本项目背景下开发的算法将产生重大的实际影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanmugavelayu Muthukrishnan其他文献

Shanmugavelayu Muthukrishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanmugavelayu Muthukrishnan', 18)}}的其他基金

AF:Small:Extreme Streaming Problems
AF:小:极端流媒体问题
  • 批准号:
    1718432
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
  • 批准号:
    1535878
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Dealing Efficiently with Big Social Network Data
BIGDATA:F:DKA:协作研究:有效处理社交网络大数据
  • 批准号:
    1447793
  • 财政年份:
    2014
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions
AF:媒介:协作研究:稀疏逼近:理论与扩展
  • 批准号:
    1161151
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Workshop on Foundations of Algorithms in the Field
现场算法基础研讨会
  • 批准号:
    1131447
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
ICES: Small: Auctions and Optimizations in Ad Exchanges
ICES:小型:广告交易中的拍卖和优化
  • 批准号:
    1101677
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Approximate Distributed Stream Tracking: Enabling the Next Generation of Data-Streaming Applications
近似分布式流跟踪:支持下一代数据流应用程序
  • 批准号:
    0414852
  • 财政年份:
    2005
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms for sparse data representations
协作研究:稀疏数据表示算法
  • 批准号:
    0354690
  • 财政年份:
    2004
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似海外基金

Theoretical foundation of sublinear-time algorithms
亚线性时间算法的理论基础
  • 批准号:
    RGPIN-2015-03907
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical foundation of sublinear-time algorithms
亚线性时间算法的理论基础
  • 批准号:
    RGPIN-2015-03907
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Rehabilitating Constants in Sublinear Algorithms
AF:小:恢复次线性算法中的常数
  • 批准号:
    2008868
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
AF: Small: Sublinear Algorithms for Flows, Matchings, and Routing Problems
AF:小:流、匹配和路由问题的次线性算法
  • 批准号:
    2008305
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
CAREER: Sublinear Graph Algorithms: New Insights for Foundational Problems
职业:次线性图算法:基本问题的新见解
  • 批准号:
    1942010
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Theoretical foundation of sublinear-time algorithms
亚线性时间算法的理论基础
  • 批准号:
    RGPIN-2015-03907
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
AF: Small: Sublinear Algorithms for Visual Properties
AF:小:视觉属性的次线性算法
  • 批准号:
    1909612
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Theoretical foundation of sublinear-time algorithms
亚线性时间算法的理论基础
  • 批准号:
    RGPIN-2015-03907
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了