Approximate Distributed Stream Tracking: Enabling the Next Generation of Data-Streaming Applications

近似分布式流跟踪:支持下一代数据流应用程序

基本信息

项目摘要

This research develops models, algorithmic methods and software solutions for tracking of massive data streams for monitoring applications such as IP (Internet Protocol) network traffic analysis. Such monitoring applications are inherently distributed, relying on correlating multiple streams, and therefore present challenges in terms of severe communication constraints. In addition, such massive streams are also faced with the traditional storage and per-item processing time constraints even in the centralized or the single stream cases. Under such severe constraints, monitoring is necessarily approximate. This research project develops principled methods for performing essential monitoring tasks on distributed streams under the accumulation of all such constraints. In particular, new methods are developed that trade off accuracy of analysis for meeting communication, space and time constraints. Distributed monitoring of massive data streams arises in many communication systems, primarily in security applications. The resulting models and solutions address such applications and yield better understanding of how to perform detailed data analyses within existing resource constraints. This research is carried out in collaboration with industry researchers (Minos Garofalakis and Rajeev Rastogi of Lucent) who bring extensive knowledge of stream data mining and provide data sets for testing the new algorithms for approximate distributed stream tracking. In addition, the industrial participation in this project increases the impact of this project via technology transfer. Studying the algorithmic, database and networking aspects of the problem jointly will lead to significant new insights and training. Solutions and resulting software programs will be made freely available via the project's Web site (http://www.cs.rutgers.edu/~muthu/adst.html).
该研究开发了用于跟踪大规模数据流的模型,算法方法和软件解决方案,用于监控IP(互联网协议)网络流量分析等应用。这样的监控应用固有地是分布式的,依赖于关联多个流,因此在严格的通信约束方面存在挑战。此外,即使在集中式或单流的情况下,这种海量流也面临传统的存储和每个项目处理时间的限制。在如此严格的限制下,监测必然是近似的。这个研究项目开发原则性的方法,用于在所有这些约束的积累下对分布式流执行必要的监控任务。特别是,新的方法开发,权衡准确性的分析,以满足通信,空间和时间的限制。大规模数据流的分布式监控出现在许多通信系统中,主要是在安全应用中。由此产生的模型和解决方案解决了这些应用程序,并更好地了解如何在现有资源限制范围内进行详细的数据分析。这项研究是与行业研究人员(朗讯的Minos Garofalakis和Rajeev Rastogi)合作进行的,他们带来了流数据挖掘的广泛知识,并为测试近似分布式流跟踪的新算法提供了数据集。此外,工业界参与该项目通过技术转让增加了该项目的影响。共同研究问题的算法、数据库和网络方面将带来重要的新见解和培训。解决办法和由此产生的软件程序将通过该项目的网址(http://www.cs.rutgers.edu/admuthu/adst.html)免费提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanmugavelayu Muthukrishnan其他文献

Shanmugavelayu Muthukrishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanmugavelayu Muthukrishnan', 18)}}的其他基金

AF:Small:Extreme Streaming Problems
AF:小:极端流媒体问题
  • 批准号:
    1718432
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
  • 批准号:
    1535878
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
BIGDATA: F: DKA: Collaborative Research: Dealing Efficiently with Big Social Network Data
BIGDATA:F:DKA:协作研究:有效处理社交网络大数据
  • 批准号:
    1447793
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions
AF:媒介:协作研究:稀疏逼近:理论与扩展
  • 批准号:
    1161151
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Workshop on Foundations of Algorithms in the Field
现场算法基础研讨会
  • 批准号:
    1131447
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
ICES: Small: Auctions and Optimizations in Ad Exchanges
ICES:小型:广告交易中的拍卖和优化
  • 批准号:
    1101677
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithms for sparse data representations
协作研究:稀疏数据表示算法
  • 批准号:
    0354690
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
ITR: Sublinear Algorithms for Massive Data Sets
ITR:海量数据集的次线性算法
  • 批准号:
    0220280
  • 财政年份:
    2002
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
DiPET: Distributed Stream Processing on Fog and Edge Systems via Transprecise Computing
DiPET:通过 Transprecise 计算在雾和边缘系统上进行分布式流处理
  • 批准号:
    EP/T022345/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
ABLY Realtime Data-Stream-Exchange (DSX): incorporating cutting-edge, elastic, globally distributed, replicated Message-Storage-Processing-Layer
ABLY 实时数据流交换 (DSX):融合了尖端、弹性、全球分布式、复制的消息存储处理层
  • 批准号:
    105226
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Feasibility Studies
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    1919126
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    1919181
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
EAPSI: Connecting Distributed Impacts in Urban Watersheds to In-stream Hydrology and Water Quality Observations through Refined Landscape Metrics for Optimal Stormwater Handling
EAPSI:通过精细的景观指标将城市流域的分布式影响与河流内水文和水质观测联系起来,以实现最佳雨水处理
  • 批准号:
    1613598
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship Award
A Study on Distributed Real-Time Stream Processing Infrastructure with Advanced Operators
具有高级算子的分布式实时流处理基础设施的研究
  • 批准号:
    22700090
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
CSR: Small: Materialized Views over Heterogeneous Structured Data Sources in a Distributed Event Stream Processing Environment
CSR:小:分布式事件流处理环境中异构结构化数据源的物化视图
  • 批准号:
    0915325
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Adaptive data stream processing in heterogeneous distributed computing environments using real-time context
使用实时上下文的异构分布式计算环境中的自适应数据流处理
  • 批准号:
    DP0880874
  • 财政年份:
    2008
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Projects
III: Distributed Stream Integration
III:分布式流集成
  • 批准号:
    0713267
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了