SGER: Nonlinear IV Approach to Inference in Nonstationary Panels

SGER:非平稳面板中的非线性 IV 推理方法

基本信息

  • 批准号:
    0233940
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-15 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

The project explores a nonlinear IV approach to inference in general nonstationary panels with unit roots. The approach relies on the standard IV methods with instruments constructed from nonlinear transformations of integrated processes. Though the methodology is very simple to implement, it provides extremely effective tools for testing unit roots in panels. Our tests for unit roots in panels are simply based on individual nonlinear IV t-ratios, which are nothing but the usual t-ratios based on the IV estimators using as instruments the integrable transformations of lagged levels. Such nonlinear IV based tests have many desirable properties and can be used for very general models. The test statistics have Gaussian limit distributions at each cross- sectional level, and more importantly, they are asymptotically independent across different cross-sectional units. The asymptotic Gaussianity and independence indeed hold under very mild conditions that allow for cross-sectional dependency and heterogeneity. In contrast, virtually all of the related work done previously assumes either cross- sectional independence or specific forms of dependency across individual units. Needless to say, the assumption of cross-sectional independence is highly unrealistic for many economic panels of interest. Any presumption on the form of cross-sectional dependency may also severely restrict the applicability of the tests. Our asymptotics only require the time dimension to be large, so the tests are valid for panels with both large and small cross-sectional dimensions. The proposed tests for unit roots allow not only for the cross-sectional dependencies of nnovations, but also for the presence of cointegration across cross-sectional units in levels. Unbalanced panels and panels with heterogeneous individual shortrun dynamics and cross-sectionally related dynamics are also permitted. The proposed tests also make it possible to more carefully formulate the unit root and cointegration hypotheses in panels, and use order statistics to test for and against the presence of unit roots and cointegrationin only a fraction of individual units. None of the currently available tests can be used to test for unit roots in such general panels. Some preliminary simulations indicate that our nonlinear IV based tests perform very well in finite samples even for panels with relatively small time and cross-sectional dimensions.
该项目探讨了一种非线性IV方法,在一般的非平稳面板与单位根的推断。 该方法依赖于标准的IV方法与工具构建的非线性变换的综合过程。虽然该方法实现起来非常简单,但它为测试面板中的单位根提供了非常有效的工具。我们的单位根的面板测试是简单地基于个人的非线性IV的t-比率,这是什么,但通常的t-比率的基础上的IV估计作为工具,滞后水平的可积变换。这种基于非线性IV的测试具有许多期望的性质,并且可以用于非常一般的模型。检验统计量在每个横截面水平上具有高斯极限分布,更重要的是,它们在不同的横截面单元上是渐近独立的。渐近高斯性和独立性确实在非常温和的条件下成立,允许横截面依赖性和异质性。 相反,以前所做的几乎所有相关工作都假设跨部门的独立性或跨单个单元的特定形式的依赖性。不用说,假设横截面的独立性是非常不现实的许多经济小组的利益。任何关于横截面依赖性形式的假设也可能严重限制检验的适用性。我们的渐近性只要求时间维度很大,所以测试对于具有大和小横截面尺寸的面板都有效。 单位根的检验不仅考虑了nnovations的横截面依赖性,而且考虑了水平上横截面单位之间的协整。不平衡的面板和面板与异质个人shortrun动态和横截面相关的动态也是允许的。拟议的检验还使得可以更仔细地制定面板中的单位根和协整假设,并使用顺序统计量来检验仅在一小部分单个单位中是否存在单位根和协整。目前可用的测试都不能用于测试这样的一般面板中的单位根。一些初步的模拟表明,我们的非线性IV为基础的测试表现非常好,在有限的样本,即使是面板相对较小的时间和横截面尺寸。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoosoon Chang其他文献

Evaluating factor pricing models using high-frequency panels: Evaluating factor pricing models
使用高频面板评估要素定价模型:评估要素定价模型
  • DOI:
    10.3982/qe251
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yoosoon Chang;Yongok Choi;Hwagyun Kim;Joon Y. Park
  • 通讯作者:
    Joon Y. Park
Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate
评估分布时间序列的趋势:人类对气候影响的空间指纹
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoosoon Chang;R. Kaufmann;C. Kim;J. Miller;Joon Y. Park;Sungkeun Park
  • 通讯作者:
    Sungkeun Park
Oil Prices Uncertainty, Endogenous Regime Switching, and Inflation Anchoring
油价不确定性、内生机制转换和通胀锚定
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoosoon Chang;Ana María Herrera;E. Pesavento
  • 通讯作者:
    E. Pesavento
Testing for Unit Roots in Small Panels with Short-run and Long-run Cross-sectional Dependencies
具有短期和长期横截面依赖性的小面板中的单位根测试
  • DOI:
    10.1111/j.1467-937x.2009.00549.x
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoosoon Chang;Wonho Song
  • 通讯作者:
    Wonho Song
Evaluating Factor Pricing Models Using High Frequency Panels
使用高频面板评估要素定价模型

Yoosoon Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoosoon Chang', 18)}}的其他基金

Taking a New Contour: A Novel Approach to Inference in Nonstationary Panels
采取新的轮廓:非平稳面板中推理的新方法
  • 批准号:
    0969146
  • 财政年份:
    2009
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Taking a New Contour: A Novel Approach to Inference in Nonstationary Panels
采取新的轮廓:非平稳面板中推理的新方法
  • 批准号:
    0730152
  • 财政年份:
    2006
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Taking a New Contour: A Novel Approach to Inference in Nonstationary Panels
采取新的轮廓:非平稳面板中推理的新方法
  • 批准号:
    0453069
  • 财政年份:
    2005
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant

相似海外基金

New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
  • 批准号:
    DP240101494
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Projects
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了