CAREER: Image Variability Decomposition for Recognition, Reconstruction, and Tracking
职业:用于识别、重建和跟踪的图像变异分解
基本信息
- 批准号:0234606
- 负责人:
- 金额:$ 9.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-01-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research investigates how changes in illumination, pose, and shape of an object produce changes in the observed images. The central idea is that the variability in the images of an object can be decomposed into component parts - illumination, pose, and shape - each of which, when analyzed separately, is well behaved. This paradigm, termed ``Image Variability Decomposition,'' differs substantially from the appearance-based paradigm in that by decomposing the variability, one is able to uncover generative structures to the set of images over each source of the variability. Thus, unlike appearance-based methods, it is not necessary to have seen the object under all of the seemingly infinite possible permutations of lighting conditions, pose, and shape. Instead, each component of the image variability is explicitly modeled. This research is applied to problems in which this variability plays an important role: face recognition, change detection, structure from motion, and visual tracking. The education component of this award focuses on laboratory and project intensive teaching. Students, both graduate and undergraduate, are not only taught about known unsolved problems, but are encouraged to consider posing new problems in computer vision, robotics, and pattern recognition. Students are also rewarded for finding new applications in new domains. The education activities will center around the construction of a computer vision laboratory within Yale University's newly formed Center for Computational Vision and Control, the design of laboratory intensive courses on both computer vision and pattern and object recognition, and the completion of a textbook on computer vision.
这项研究调查了物体的照明、姿势和形状的变化如何在观察到的图像中产生变化。其核心思想是,物体图像中的可变性可以分解为组成部分--照明、姿势和形状--当单独分析时,每一部分都表现良好。这一范式称为“图像可变性分解”,它与基于外观的范式有很大的不同,因为通过分解可变性,人们能够揭示可变性的每个来源上的图像集的生成结构。因此,与基于外观的方法不同,没有必要在光照条件、姿势和形状的所有看似无限可能的排列下看到对象。取而代之的是,对图像可变性的每个分量进行显式建模。这项研究被应用于这种变异性发挥重要作用的问题:人脸识别、变化检测、运动结构和视觉跟踪。该奖项的教育部分侧重于实验室和项目密集教学。学生,包括研究生和本科生,不仅被教授已知的未解决的问题,而且被鼓励在计算机视觉、机器人和模式识别方面提出新的问题。学生还会因为在新领域发现新的应用程序而获得奖励。教育活动将围绕在耶鲁大学新成立的计算视觉与控制中心内建立一个计算机视觉实验室,设计计算机视觉、模式和物体识别的实验室强化课程,以及完成一本计算机视觉教科书。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Belhumeur其他文献
Editorial for the Special Issue on Photometric Analysis for Computer Vision
- DOI:
10.1007/s11263-009-0292-3 - 发表时间:
2009-09-11 - 期刊:
- 影响因子:9.300
- 作者:
Peter Belhumeur;Katsushi Ikeuchi;Emmanuel Prados;Stefano Soatto;Peter Sturm - 通讯作者:
Peter Sturm
Peter Belhumeur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Belhumeur', 18)}}的其他基金
RI: Small: Collaborative Research: Visual Attributes for Identification and Search in Images
RI:小型:协作研究:图像中识别和搜索的视觉属性
- 批准号:
1117170 - 财政年份:2011
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
ITR: An Electronic Field Guide: Plant Exploration and Discovery in the 21st Century
ITR:电子野外指南:21 世纪的植物探索和发现
- 批准号:
0325867 - 财政年份:2003
- 资助金额:
$ 9.22万 - 项目类别:
Continuing Grant
Complex Reflectance, Texture and Shape: Methods and Representations for Object Modeling
复杂的反射率、纹理和形状:对象建模的方法和表示
- 批准号:
0308185 - 财政年份:2003
- 资助金额:
$ 9.22万 - 项目类别:
Continuing Grant
Instrumentation for Empirical Studies in the Modeling of Visual Appearance
视觉外观建模实证研究仪器
- 批准号:
0224431 - 财政年份:2002
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
CAREER: Image Variability Decomposition for Recognition, Reconstruction, and Tracking
职业:用于识别、重建和跟踪的图像变异分解
- 批准号:
9703134 - 财政年份:1997
- 资助金额:
$ 9.22万 - 项目类别:
Continuing Grant
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
- 批准号:
2335309 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Self-Supervised Sequential Biomedical Image-Omics
自监督序贯生物医学图像组学
- 批准号:
DE240100168 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Discovery Early Career Researcher Award
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
- 批准号:
24K21121 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
- 批准号:
24K20830 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Research Grant
A versatile machine learning image recognition software for automating synchrotron Macromolecular Beamlines
用于自动化同步加速器高分子束线的多功能机器学习图像识别软件
- 批准号:
BB/Z514329/1 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Research Grant
Explainable Medical Image Reports Generation Via Visual Concepts
通过视觉概念生成可解释的医学图像报告
- 批准号:
24K20795 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Travel Grant: 2024 Image Science Gordon Research Conference and Gordon Research Seminar
旅费补助:2024年图像科学戈登研究会议和戈登研究研讨会
- 批准号:
2420094 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
- 批准号:
BB/Y513994/1 - 财政年份:2024
- 资助金额:
$ 9.22万 - 项目类别:
Research Grant














{{item.name}}会员




