CAREER: Markov Chain Monte Carlo Methods
职业:马尔可夫链蒙特卡罗方法
基本信息
- 批准号:0237834
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2004-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Markov chain Monte Carlo (MCMC) methods are an importantalgorithmic device in a variety of fields. This project studiestechniques for rigorous analysis of the convergence properties ofMarkov chains. The emphasis is on refining probabilistic,analytic and combinatorial tools (such as coupling, log-Sobolev,and canonical paths) to improve existing algorithms and developefficient algorithms for important open problems.Problems arising in computer science, discrete mathematics,and physics are of particular interest, e.g., generating randomcolorings and independent sets of bounded-degree graphs,approximating the permanent, estimating the volume of aconvex body, and sampling contingency tables. The projectalso studies inherent connections between phasetransitions in statistical physics models and convergenceproperties of associated Markov chains.The investigator is developing a new graduate course on MCMC methods.
马尔可夫链蒙特卡罗(MCMC)方法在许多领域都是一种重要的算法手段。这个项目研究的技术严格分析马尔可夫链的收敛性质。重点是改进概率、分析和组合工具(如耦合、log-Sobolev和规范路径),以改进现有算法并开发用于重要开放问题的高效算法。在计算机科学、离散数学和物理学中出现的问题是特别感兴趣的,例如,生成随机着色和有界度图的独立集,近似永久,估计凸体的体积,以及抽样列联表。该项目还研究了统计物理模型中的相变与相关马尔可夫链的收敛性之间的内在联系。研究者正在开发一门关于MCMC方法的新研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Vigoda其他文献
Improved bounds for sampling colorings
- DOI:
10.1109/sffcs.1999.814577 - 发表时间:
1999-10 - 期刊:
- 影响因子:0
- 作者:
Eric Vigoda - 通讯作者:
Eric Vigoda
Structure Learning of H-Colorings
H-着色的结构学习
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Antonio Blanca;Zongchen Chen;Daniel Stefankovic;Eric Vigoda - 通讯作者:
Eric Vigoda
Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics
统计物理中一些蒙特卡洛马尔可夫链算法的迟缓混合
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
C. Borgs;J. Chayes;A. Frieze;J. Kim;P. Tetali;Eric Vigoda;Van H. Vu - 通讯作者:
Van H. Vu
Torpid mixing of the Wang-Swendsen-Kotecký algorithm for sampling colorings
用于采样颜色的 Wang-Swendsen-Kotecký 算法的缓慢混合
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
T. Luczak;Eric Vigoda - 通讯作者:
Eric Vigoda
General upper bounds for covering numbers
覆盖数字的一般上限
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
A. Godbole;S. E. Thompson;Eric Vigoda - 通讯作者:
Eric Vigoda
Eric Vigoda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Vigoda', 18)}}的其他基金
AF: Small: New Techniques for Optimal Bounds on MCMC Algorithms
AF:小:MCMC 算法最优边界的新技术
- 批准号:
2147094 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Phase Transitions in Sampling Related Problems
合作研究:AF:小:采样相关问题中的相变
- 批准号:
2205743 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Phase Transitions in Sampling Related Problems
合作研究:AF:小:采样相关问题中的相变
- 批准号:
2007022 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Approximate Counting, Markov Chains and Phase Transitions
AF:小:近似计数、马尔可夫链和相变
- 批准号:
1617306 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: EAGER: Phase Transitions in Markov Chain Mixing Times
AF:EAGER:马尔可夫链混合时间中的相变
- 批准号:
1555579 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AF: Small: Phase Transitions in Approximate Counting Problems
AF:小:近似计数问题中的相变
- 批准号:
1217458 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Markov Chain Monte Carlo Methods
职业:马尔可夫链蒙特卡罗方法
- 批准号:
0455666 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
多源网络攻击下Markov跳变信息物理系
统的安全性分析与控制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于非周期间歇控制的Markov切换随机时滞系统的镇定及其应用研究
- 批准号:QN25A010026
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
DoS攻击下Semi-Markov跳变拓扑结构网络化协同运动系统预测控制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于真实世界数据探讨针刺对脑卒中后肩痛患者康复结局的影响及成本-效用Markov分析
- 批准号:2024Y9524
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于患者报告结局的纵向数据构建连续时间Markov链与Cox风险比例
联合模型及精准患者分层管理的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 Hidden-Markov 理论的孤岛微电网负荷
频率鲁棒控制研究
- 批准号:Q24F030019
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
模型未知下Markov跳变系统事件触发滑模控制研究
- 批准号:62373002
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
隐semi-Markov过程驱动的双时间尺度时滞系统有限时间控制
- 批准号:62303016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于异步Markov切换的网络化区间状态估计及其控制
- 批准号:62373220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
带有Markov链和随机脉冲的离散时间随机时滞系统的稳定性、控制及应用研究
- 批准号:12302034
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Optimization of Markov Chain Monte Carlo Schemes with Spectral Gap Estimation
具有谱间隙估计的马尔可夫链蒙特卡罗方案优化
- 批准号:
2311307 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Stability for Markov Chain Monte Carlo Inference with Applications in Robust Stochastic Control
马尔可夫链蒙特卡罗推理的稳定性及其在鲁棒随机控制中的应用
- 批准号:
535321-2019 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Markov chain theory and its applications
马尔可夫链理论及其应用
- 批准号:
RGPIN-2021-03775 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Markov Chain Convergence Rates in High Dimensions
高维马尔可夫链收敛率
- 批准号:
569204-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Advanced Markov chain Monte Carlo methods for physically based lighting simulations
用于基于物理的照明模拟的高级马尔可夫链蒙特卡罗方法
- 批准号:
546767-2020 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Markov chain Monte Carlo algorithms and locally informed proposal distributions
马尔可夫链蒙特卡罗算法和本地通知的提案分布
- 批准号:
RGPIN-2019-04488 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual