Computational and Mathematical Study in Protein Interactions and Functions

蛋白质相互作用和功能的计算和数学研究

基本信息

  • 批准号:
    0241102
  • 负责人:
  • 金额:
    $ 103.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

0241102SunDetermining protein interactions and functions are central in most proteomics projects. This research focuses on the development of statistical and computational methods for the analysis of protein interaction data coming from high-throughput proteomic technologies such as yeast two-hybrid assays and mass spectrometry, and protein function data coming from databases of large-scale function annotations. The research involves the study of the following two important problems in biology: (1) identifying domain-domain interactions and protein-domain interactions from a large number of protein-protein interactions, and (2) assigning functions to unknown proteins from the knowledge of the functions of the annotated proteins, gene expression profiles, gene knockouts, protein sequence similarities, and protein-protein interactions. These results obtained for yeast proteins can help us predict interactions and functions of humanproteins. Training postdoctoral associates and graduate students from mathematics, statistics, computer science and molecular biology for proteomic research is an important part of the proposed research. Based on the existing excellent education program in the field of computational biology and bioinformatics within the Center for Computational and Experimental Genomics (CCEG) in USC, the principal investigators plan to train future researchers through rigorous course work, seminars, discussion groups, and participation in the research project.In recent years, an increasing number of genomes of model organisms have been sequenced. Using these genomic sequences, researchers have been able to make tremendous progress in the study of genomes. Beyond these successes is the far more challenging and rewarding task of understanding proteomes. In addition to genome sequences, many other databases, such as protein-protein physical interactions, genetic interactions, protein-DNA interactions, and gene expressions, have become available. An important problem is how to combine information from the variety of different databases to understand the biological processes and biological functions of proteins. The principal investigators will develop new statistical and computational methods for estimation and prediction of protein functions and for understanding important biological problems integrating several relevant large databases. They will also train graduate students and postdoctoral associates in the field of computational biology and bioinformatics through their participation in research activities related to the proposed project. The proposed project will generate a suite of computer algorithms related to protein-protein interactions and functional predictions. Both the algorithms and results will be disseminated through the web. The results from this study will be important for basic biological studies as well as for disease related studies from identifying protein functions.
0241102Sun 确定蛋白质相互作用和功能是大多数蛋白质组学项目的核心。本研究的重点是开发统计和计算方法,用于分析来自高通量蛋白质组学技术(例如酵母双杂交测定和质谱法)的蛋白质相互作用数据,以及来自大规模功能注释数据库的蛋白质功能数据。该研究涉及生物学中以下两个重要问题的研究:(1)从大量蛋白质-蛋白质相互作用中识别域-域相互作用和蛋白质-域相互作用,以及(2)根据注释蛋白质的功能、基因表达谱、基因敲除、蛋白质序列相似性和蛋白质-蛋白质相互作用的知识,为未知蛋白质分配功能。酵母蛋白的这些结果可以帮助我们预测人类蛋白的相互作用和功能。培训数学、统计学、计算机科学和分子生物学领域的博士后和研究生进行蛋白质组研究是拟议研究的重要组成部分。基于南加州大学计算和实验基因组学中心(CCEG)现有的计算生物学和生物信息学领域的优秀教育项目,主要研究人员计划通过严格的课程作业、研讨会、讨论小组和参与研究项目来培养未来的研究人员。 近年来,越来越多的模式生物基因组被测序。利用这些基因组序列,研究人员已经能够在基因组研究中取得巨大进展。除了这些成功之外,理解蛋白质组是更具挑战性和回报性的任务。除了基因组序列之外,许多其他数据库,例如蛋白质-蛋白质物理相互作用、遗传相互作用、蛋白质-DNA 相互作用和基因表达,也已变得可用。一个重要的问题是如何结合来自各种不同数据库的信息来了解蛋白质的生物过程和生物功能。主要研究人员将开发新的统计和计算方法,用于估计和预测蛋白质功能,并结合几个相关的大型数据库来理解重要的生物学问题。他们还将通过参与与拟议项目相关的研究活动来培训计算生物学和生物信息学领域的研究生和博士后。拟议的项目将生成一套与蛋白质-蛋白质相互作用和功能预测相关的计算机算法。算法和结果都将通过网络传播。这项研究的结果对于基础生物学研究以及通过识别蛋白质功能进行疾病相关研究非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fengzhu Sun其他文献

HiCzin: Normalizing metagenomic Hi-C data and detecting spurious contacts using zero-inflated negative binomial regression
HiCzin:使用零膨胀负二项式回归标准化宏基因组 Hi-C 数据并检测虚假接触
  • DOI:
    10.1101/2021.03.01.433489
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxuan Du;S. Laperriere;J. Fuhrman;Fengzhu Sun
  • 通讯作者:
    Fengzhu Sun
On the use of population-based registries in the clinical validation of genetic tests for disease susceptibility
基于人群的登记在疾病易感性基因检测临床验证中的应用
  • DOI:
    10.1097/00125817-200005000-00005
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Quanhe Yang;M. Khoury;S. Coughlin;Fengzhu Sun;Dana Flanders
  • 通讯作者:
    Dana Flanders
Bidirectional subsethood of shared marker profiles enables accurate virus classification
  • DOI:
    10.1186/s40168-025-02159-x
  • 发表时间:
    2025-07-24
  • 期刊:
  • 影响因子:
    12.700
  • 作者:
    Christopher Riccardi;Yuqiu Wang;Shibu Yooseph;Fengzhu Sun
  • 通讯作者:
    Fengzhu Sun
Comparison of the effectiveness of different normalization methods for metagenomic cross-study phenotype prediction under heterogeneity
异质性下宏基因组交叉研究表型预测不同归一化方法的有效性比较
  • DOI:
    10.1038/s41598-024-57670-2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Beibei Wang;Fengzhu Sun;Y. Luan
  • 通讯作者:
    Y. Luan
Microsatellite mutations during the polymerase chain reaction: mean field approximations and their applications.
聚合酶链式反应过程中的微卫星突变:平均场近似及其应用。
  • DOI:
    10.1016/s0022-5193(03)00155-3
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Yinglei Lai;Fengzhu Sun
  • 通讯作者:
    Fengzhu Sun

Fengzhu Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fengzhu Sun', 18)}}的其他基金

MIM: Machine Learning, Systems Modeling, and Experimental Approaches to Understand the Universal Rules of Life of Microbiota Using Marine Time Series Data
MIM:利用海洋时间序列数据了解微生物群生命普遍规则的机器学习、系统建模和实验方法
  • 批准号:
    2125142
  • 财政年份:
    2022
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Standard Grant
Inference of Markovian Properties of Molecular Sequences Using Shotgun Reads and Applications
使用鸟枪读取和应用推断分子序列的马尔可夫性质
  • 批准号:
    1518001
  • 财政年份:
    2015
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Integrative mathematical, computational, and experimental approach to study biological systems
研究生物系统的综合数学、计算和实验方法
  • 批准号:
    RGPIN-2021-03472
  • 财政年份:
    2022
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
Integrative mathematical, computational, and experimental approach to study biological systems
研究生物系统的综合数学、计算和实验方法
  • 批准号:
    RGPIN-2021-03472
  • 财政年份:
    2021
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2021
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2020
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2019
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
A Case Study of the Cross-disciplinary Use of Mathematical Constructs in Computational Biology as Tool Migration
计算生物学中数学结构的跨学科使用作为工具迁移的案例研究
  • 批准号:
    1922143
  • 财政年份:
    2019
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Continuing Grant
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2018
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2017
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
Using mathematical and computational modelling to study the formation of the primitive streak
使用数学和计算模型来研究原纹的形成
  • 批准号:
    1905802
  • 财政年份:
    2017
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Studentship
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2016
  • 资助金额:
    $ 103.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了