Mathematical and computational study of dispersal in mixed landscapes

混合景观中扩散的数学和计算研究

基本信息

  • 批准号:
    RGPIN-2016-05277
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

My research program aims to understand how populations disperse and persist in mixed landscapes, particularly those disturbed by anthropogenic activity including agriculture, forestry, and climate change. For this proposal, I am focussing on developing the mathematical theory for intelligent dispersers operating in landscapes periodically disturbed by agriculture or forestry. In particular, I am interested in understanding how persistence is affected by the three interacting timescales of organism dynamics (generation time, multi-annual population cycles), anthropogenic activity (agriculture, forestry), and recolonisation (populations dispersing back into habitat that has become habitable after, e.g., harvest or planting). Bumblebees and tree squirrels both search for resources along circular forays that demonstrate a high degree of cognition: The organisms remember locations where they found resources earlier, and can learn about new resource patches from targeted communication with others. In agricultural landscapes, the synchronisation of bloom time over large portions of the landscape creates a strong external forcing in the distribution of resources that is a challenge for bumblebees, indeed, wild bee populations are in decline globally. In managed forests, dispersing organisms are being asked to recolonise an increasing proportion of the landscape: at what point do harvesting schedules make it no longer possible for the recolonisation process to be completed? In order for us to understand how intelligent dispersers locate new resources, and whether or not this can be done quickly enough on disturbed landscapes to ensure population persistence, we need mathematical models for their movement patterns. Current continuum models do not take memory into account, and communication between conspecifics is limited to olfactory cues deposited in the environment or carried by chemical signals. My research program will develop new mathematical models for intelligent dispersal, and then analyse them numerically to determine species persistence in the presence of anthropogenic disturbance that is periodic in space and time. The result will be the development of novel PDE models that have never before been studied, and their analysis will expand our understanding of dynamical systems, both in terms of the behaviours that can be observed, and in the analytic and numerical techniques used. Finally, these models lend important insights into the effect of anthropogenic activity in managed ecosystems, particularly with regard to species persistence for species of economic and/or esthetic concern.
我的研究项目旨在了解种群如何在混合景观中分散和持续存在,特别是那些受到人为活动(包括农业、林业和气候变化)干扰的景观。在这个提议中,我专注于发展在周期性受到农业或林业干扰的景观中运行的智能分散器的数学理论。特别是,我感兴趣的是了解持久性是如何受到生物体动力学(世代时间,多年人口周期),人为活动(农业,林业)和再殖民化(种群分散回栖息地后,例如收获或种植)这三个相互作用的时间尺度的影响。大黄蜂和树松鼠都是沿着循环搜索资源的,这表明它们具有高度的认知能力:这些生物记得它们早些时候发现资源的位置,并且可以通过与其他生物的有针对性的交流来了解新的资源斑块。在农业景观中,大部分景观的开花时间同步,在资源分配中产生了强大的外部强迫,这对大黄蜂来说是一个挑战,事实上,全球野生蜜蜂数量正在下降。在管理的森林中,分散的生物被要求重新定居越来越多的景观:采伐计划在什么时候使重新定居过程不再可能完成?为了让我们了解智能分散者是如何定位新资源的,以及这是否能在受干扰的景观上足够快地完成,以确保种群的持久性,我们需要数学模型来描述它们的运动模式。目前的连续体模型没有将记忆考虑在内,同种生物之间的交流仅限于环境中储存的嗅觉线索或化学信号。我的研究项目将为智能扩散开发新的数学模型,然后对它们进行数值分析,以确定物种在空间和时间上周期性的人为干扰存在下的持久性。其结果将是开发新的PDE模型,这些模型以前从未被研究过,它们的分析将扩展我们对动力系统的理解,无论是在可以观察到的行为方面,还是在使用的分析和数值技术方面。最后,这些模型对人为活动在受管理的生态系统中的影响提供了重要的见解,特别是关于经济和/或美学关注的物种的物种持久性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyson, Rebecca其他文献

The Relative Contribution of Direct and Environmental Transmission Routes in Stochastic Avian Flu Epidemic Recurrence: An Approximate Analysis
  • DOI:
    10.1007/s11538-018-0414-6
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mata, May Anne;Greenwood, Priscilla;Tyson, Rebecca
  • 通讯作者:
    Tyson, Rebecca

Tyson, Rebecca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tyson, Rebecca', 18)}}的其他基金

Resilience of Cyclic Ecosystems in the Presence of R- and P-Tipping
R 和 P 倾倒存在下循环生态系统的恢复力
  • 批准号:
    RGPIN-2022-03589
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Public Communications Skills for Applied Mathematicians - Competences en Communications Publiques pour Mathematiciens Appliques
应用数学家的公共沟通技巧 - Competences en Communications Publiques pour Mathematiciens Appliques
  • 批准号:
    555700-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Science Communication Skills Grant
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Determining optimal wildflower patch arrangements to maximize pollination services by wild bees in cultivated blueberry
确定最佳野花斑块布置,以最大限度地提高野生蜜蜂在栽培蓝莓中的授粉服务
  • 批准号:
    506922-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Strategic Projects - Group
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Determining optimal wildflower patch arrangements to maximize pollination services by wild bees in cultivated blueberry
确定最佳野花斑块布置,以最大限度地提高野生蜜蜂在栽培蓝莓中的授粉服务
  • 批准号:
    506922-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Strategic Projects - Group
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Determining optimal wildflower patch arrangements to maximize pollination services by wild bees in cultivated blueberry
确定最佳野花斑块布置,以最大限度地提高野生蜜蜂在栽培蓝莓中的授粉服务
  • 批准号:
    506922-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Strategic Projects - Group
Modelling the effect of wildflower enhancements on bumblebee pollination services in FraserValley blueberry crops
模拟野花增强对弗雷泽河谷蓝莓作物熊蜂授粉服务的影响
  • 批准号:
    507129-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
  • 批准号:
    10793008
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
  • 批准号:
    10364119
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Integrative mathematical, computational, and experimental approach to study biological systems
研究生物系统的综合数学、计算和实验方法
  • 批准号:
    RGPIN-2021-03472
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
  • 批准号:
    10612718
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
Metabolic determinants of metastatic heterogeneity: quantitative experiments and mathematical models
转移异质性的代谢决定因素:定量实验和数学模型
  • 批准号:
    10448245
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
Metabolic determinants of metastatic heterogeneity: quantitative experiments and mathematical models
转移异质性的代谢决定因素:定量实验和数学模型
  • 批准号:
    10231357
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
Developing mathematical model driven optimized recurrent glioblastoma therapies
开发数学模型驱动优化的复发性胶质母细胞瘤疗法
  • 批准号:
    10437915
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
Integrative mathematical, computational, and experimental approach to study biological systems
研究生物系统的综合数学、计算和实验方法
  • 批准号:
    RGPIN-2021-03472
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and computational study of dispersal in mixed landscapes
混合景观中扩散的数学和计算研究
  • 批准号:
    RGPIN-2016-05277
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Developing mathematical model driven optimized recurrent glioblastoma therapies
开发数学模型驱动优化的复发性胶质母细胞瘤疗法
  • 批准号:
    10288768
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了