Probability Theory and Spin Glasses.
概率论和自旋玻璃。
基本信息
- 批准号:0243813
- 负责人:
- 金额:$ 19.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0243813Talagrand Mean field models for spin glasses (such as the famous Sherrington Kirkpatrick model) exhibit some completely new phenomenon of probability theory, that at a high level can be described as the existence of intricate structures among the near extreme values of large families of correlated random variables. The rigorous study of these models is still in its infancy, and the main goal of this proposal is to pursue it. Two of the specific goals are to obtain a better understanding of the low-temperature phase of the p-spin interaction model, and to start the study of the new Hamiltonians introduced by F. Guerra in his broken replica-symmetry bound for the Sherrington Kirkpatrick model. One of the central themes of probability theory is the emergence of a kind of order out of large number of random events. This is expressed by classical theorems, such as the law of large numbers. These classical results relate to situations where the random events are independent, that is, the outcome of one does not influence the outcome of the others. Such an assumption is unrealistic in practice. We investigate the emergence of new types of collective behavior in large collections of random events, where each event can, and will, influence the outcome of the others. The specific mathematical models have been motivated by the behavior of magnetized particles, and are known as "spin glasses".
0243813自旋玻璃的Talagrand平均场模型(如著名的Sherrington Kirkpatrick模型)展示了一些全新的概率论现象,在更高的水平上,可以描述为在大族相关随机变量的近极值中存在复杂的结构。对这些模型的严格研究还处于初级阶段,这项提案的主要目标是追求它。其中两个具体目标是更好地理解p自旋相互作用模型的低温相,并开始研究F.Guera在他对Sherrington Kirkpatrick模型的破碎复制对称界中引入的新哈密顿量。概率论的中心主题之一是在大量随机事件中出现一种秩序。这是用经典的定理来表达的,比如大数定律。这些经典结果涉及随机事件相互独立的情况,即一个事件的结果不影响其他事件的结果。这样的假设在实践中是不现实的。我们调查了在随机事件的大型集合中出现的新类型的集体行为,其中每个事件都可以并将影响其他事件的结果。具体的数学模型是由磁化粒子的行为驱动的,被称为“自旋玻璃”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Talagrand其他文献
A new countably determined Banach space
- DOI:
10.1007/bf02760563 - 发表时间:
1984-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
Separabilite vague dans l’espace des mesures sur un compact
- DOI:
10.1007/bf02762878 - 发表时间:
1980-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
Orlicz property and cotype in symmetric sequence spaces
- DOI:
10.1007/bf02772993 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
A decomposition theorem for additive set-functions, with applications to pettis integrals and ergodic means
- DOI:
10.1007/bf01214191 - 发表时间:
1979-06-01 - 期刊:
- 影响因子:1.000
- 作者:
David H. Fremlin;Michel Talagrand - 通讯作者:
Michel Talagrand
Uniform convexity and the distribution of the norm for a Gaussian measure
- DOI:
10.1007/bf00366272 - 发表时间:
1986-01-01 - 期刊:
- 影响因子:1.600
- 作者:
WanSoo Rhee;Michel Talagrand - 通讯作者:
Michel Talagrand
Michel Talagrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Talagrand', 18)}}的其他基金
Probability and Mean Field Models for Spin Glasses
自旋玻璃的概率和平均场模型
- 批准号:
0555343 - 财政年份:2006
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
Spin Glasses: A New Direction for Probability Theory
自旋玻璃:概率论的新方向
- 批准号:
9988480 - 财政年份:2000
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
Combinatorics, Banach Spaces, Probability, Spin Glasses
组合学、Banach 空间、概率、自旋玻璃
- 批准号:
9703879 - 财政年份:1997
- 资助金额:
$ 19.14万 - 项目类别:
Standard Grant
Mathematical Sciences: Probability Theory with Minimum Structures
数学科学:最小结构概率论
- 批准号:
9401194 - 财政年份:1994
- 资助金额:
$ 19.14万 - 项目类别:
Continuing grant
Mathematical Sciences: Isoperimetric Inequalities and LowerBounds for Stochastic Processes
数学科学:随机过程的等周不等式和下界
- 批准号:
9101452 - 财政年份:1991
- 资助金额:
$ 19.14万 - 项目类别:
Continuing grant
Mathematical Sciences: Application of Measure Theory to Probability and Banach Spaces
数学科学:测度论在概率和 Banach 空间中的应用
- 批准号:
8801180 - 财政年份:1988
- 资助金额:
$ 19.14万 - 项目类别:
Continuing grant
Mathematical Sciences: Application of Measure Theory to Banach Spaces and Probabilities
数学科学:测度论在 Banach 空间和概率中的应用
- 批准号:
8603951 - 财政年份:1986
- 资助金额:
$ 19.14万 - 项目类别:
Continuing grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Quantum spin liquids meet spintronics: Theory of probing quantum spin liquids with spin Hall effects
职业:量子自旋液体遇到自旋电子学:利用自旋霍尔效应探测量子自旋液体的理论
- 批准号:
2238135 - 财政年份:2023
- 资助金额:
$ 19.14万 - 项目类别:
Continuing Grant
RIXS theory for spin nematics
自旋向列的 RIXS 理论
- 批准号:
23K03331 - 财政年份:2023
- 资助金额:
$ 19.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
- 批准号:
23K03192 - 财政年份:2023
- 资助金额:
$ 19.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of Spin-Rotation Coupling in Condensed Matters
凝聚态物质自旋-旋转耦合理论
- 批准号:
23KJ0926 - 财政年份:2023
- 资助金额:
$ 19.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory of spin current phenomena utilizing the superconducting vortex as a real-space topological defect
利用超导涡旋作为实空间拓扑缺陷的自旋流现象理论
- 批准号:
22H01941 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spin fluctuation theory based on the extended Heisenberg model
基于扩展海森堡模型的自旋涨落理论
- 批准号:
22K04909 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Teleparallel Gravity Theory: Investigating Bianchi V With Spin Case
远程平行引力理论:用 Spin Case 研究 Bianchi V
- 批准号:
572268-2022 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
University Undergraduate Student Research Awards
Theory-led Design of 2D Spin Qubits
二维自旋量子位的理论主导设计
- 批准号:
EP/W028131/1 - 财政年份:2022
- 资助金额:
$ 19.14万 - 项目类别:
Fellowship
Developing a quantum thermodynamic theory for driven and heated spin systems.
开发用于驱动和加热自旋系统的量子热力学理论。
- 批准号:
2579023 - 财政年份:2021
- 资助金额:
$ 19.14万 - 项目类别:
Studentship
Spin transparency as a new approach to precision tests of fundamental symmetries in polarization experiments at colliders and storage rings: theory and experiment
自旋透明度作为对撞机和存储环偏振实验中基本对称性精确测试的新方法:理论与实验
- 批准号:
465236767 - 财政年份:2021
- 资助金额:
$ 19.14万 - 项目类别:
Research Grants














{{item.name}}会员




