Probability and Mean Field Models for Spin Glasses
自旋玻璃的概率和平均场模型
基本信息
- 批准号:0555343
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The unexpected behavior of mean-field models for spin glasses was discovered in the seventies by G. Parisi. These models are simple mathematical objects. It is remarkable that they exhibit such a subtle behavior, and that their rigorous study is so challenging. The PI believes that elucidating these models will bring the discovery of an entire new direction in probability theory. He has been trying for 10 years to build new methods to study them. One of the fundamental objectives (the proof of the Parisi formula giving the free energy of the Sherrington-Kirkpatrick model) has been attained, but this success cannot hide the fact that overall our understanding remains rather limited. In particular, two central questions, (known as the Ultrametricity conjecture and the Chaos problem) seem as hard as ever. They are possibly related to questions of analysis. The PI plans to work on these very hard questions, but also will strive to make incremental progress on less daunting issues, in particular the study of new mathematically canonical mean field Hamiltonians that exhibit replica symmetric equations of a new type. Mathematics and Physics have influenced each other in fundamental ways since at least Galileo, and this mutual influence is stronger than ever. In the seventies, Physicists discovered that certain alloys (called spin glasses) responded in an unconventional way to magnetic simulation. They introduced new models to explain these behaviors. These models are simple and natural mathematical objects. Yet for a long time there existed no mathematical method to study them. The early work of the physicists uses heuristic methods that need not be completely reliable. The present project it a step in the long range program of eliminating this discrepancy, by developing new tools from mathematics, and in particular probability theory, to completely understand these fundamental models. The long rang outcome of this program could be a new impetus on probability theory, one of the most important branch of mathematics for applications.
自旋玻璃的平均场模型的意外行为是在70年代由G。帕里西这些模型是简单的数学对象。值得注意的是,他们表现出如此微妙的行为,他们的严格研究是如此具有挑战性。PI认为,阐明这些模型将带来概率论中一个全新方向的发现。10年来,他一直在尝试建立新的方法来研究它们。基本目标之一(证明给出谢林顿-柯克帕特里克模型自由能的帕里西公式)已经实现,但这一成功并不能掩盖这样一个事实,即总体上我们的理解仍然相当有限。特别是,两个中心问题(称为超度量衡猜想和混沌问题)似乎一如既往地困难。它们可能与分析问题有关。 PI计划研究这些非常困难的问题,但也将努力在不那么令人生畏的问题上取得渐进的进展,特别是研究新的数学规范平均场哈密顿算子,这些哈密顿算子展示了一种新类型的对称方程。 至少从伽利略开始,数学和物理学就以根本的方式相互影响,而且这种相互影响比以往任何时候都要强烈。七十年代,物理学家发现某些合金(称为自旋玻璃)以非传统的方式对磁模拟做出反应。他们引入了新的模型来解释这些行为。这些模型是简单而自然的数学对象。然而,很长一段时间没有数学方法来研究它们。 物理学家的早期工作使用的启发式方法不需要完全可靠。本项目是消除这种差异的长期计划的一步,通过从数学,特别是概率论中开发新的工具,以完全理解这些基本模型。这一计划的长期成果可能会对概率论这一最重要的应用数学分支之一产生新的推动作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Talagrand其他文献
A new countably determined Banach space
- DOI:
10.1007/bf02760563 - 发表时间:
1984-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
Separabilite vague dans l’espace des mesures sur un compact
- DOI:
10.1007/bf02762878 - 发表时间:
1980-03-01 - 期刊:
- 影响因子:0.800
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
A decomposition theorem for additive set-functions, with applications to pettis integrals and ergodic means
- DOI:
10.1007/bf01214191 - 发表时间:
1979-06-01 - 期刊:
- 影响因子:1.000
- 作者:
David H. Fremlin;Michel Talagrand - 通讯作者:
Michel Talagrand
Orlicz property and cotype in symmetric sequence spaces
- DOI:
10.1007/bf02772993 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
Expected wasted space of optimal simple rectangle packing
- DOI:
10.1007/s00440-003-0299-6 - 发表时间:
2004-11-11 - 期刊:
- 影响因子:1.600
- 作者:
Michel Talagrand - 通讯作者:
Michel Talagrand
Michel Talagrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Talagrand', 18)}}的其他基金
Spin Glasses: A New Direction for Probability Theory
自旋玻璃:概率论的新方向
- 批准号:
9988480 - 财政年份:2000
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Combinatorics, Banach Spaces, Probability, Spin Glasses
组合学、Banach 空间、概率、自旋玻璃
- 批准号:
9703879 - 财政年份:1997
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Probability Theory with Minimum Structures
数学科学:最小结构概率论
- 批准号:
9401194 - 财政年份:1994
- 资助金额:
$ 16.2万 - 项目类别:
Continuing grant
Mathematical Sciences: Isoperimetric Inequalities and LowerBounds for Stochastic Processes
数学科学:随机过程的等周不等式和下界
- 批准号:
9101452 - 财政年份:1991
- 资助金额:
$ 16.2万 - 项目类别:
Continuing grant
Mathematical Sciences: Application of Measure Theory to Probability and Banach Spaces
数学科学:测度论在概率和 Banach 空间中的应用
- 批准号:
8801180 - 财政年份:1988
- 资助金额:
$ 16.2万 - 项目类别:
Continuing grant
Mathematical Sciences: Application of Measure Theory to Banach Spaces and Probabilities
数学科学:测度论在 Banach 空间和概率中的应用
- 批准号:
8603951 - 财政年份:1986
- 资助金额:
$ 16.2万 - 项目类别:
Continuing grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean Field Game Theory and Its Application to Mathematical Finance
平均场博弈论及其在数学金融中的应用
- 批准号:
23KJ0648 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
- 批准号:
2345533 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Representation Learning via Variational Mean Field Theory
通过变分平均场理论进行表示学习
- 批准号:
2401297 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Mean Field Games and Master equations
平均场游戏和主方程
- 批准号:
EP/X020320/1 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Research Grant
Mean-Field Spin Glasses and Related Topics
平均场自旋玻璃及相关主题
- 批准号:
2246715 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Dynamics of Lattice and Mean-Field Spin Systems
晶格和平均场自旋系统的动力学
- 批准号:
2246780 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
- 批准号:
2247846 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
CAREER: Photochemistry with Resonating Mean-Field
职业:光化学与共振平均场
- 批准号:
2236959 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant














{{item.name}}会员




