Electronic Transport in Thin Film Nanostructures

薄膜纳米结构中的电子传输

基本信息

  • 批准号:
    0244570
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

The primary objective of the proposed research is the investigation of quantum electrical transport in thin film nanostructures on silicon substrates. The project focuses on atomic-wire arrays and on atomically smooth metal films. Under certain growth conditions, individual metal atoms "self-assemble" into macroscopic domains of parallel "atom wires" with equal but tunable spacing between the wires. These arrays are ideal for studying the fundamentals of quantum electrical transport a function of system dimensionality and Fermi surface topology using nanoscopic probes such as a four-tip Scanning Tunneling Microscope, as well as macroscopic measurement probes such as electron- or laser beams. Atomically smooth metal films will be synthesized via a novel self-assembly mechanism that is driven by the quantum-size effect, which allows for a systematic investigation of the conductivity in relation to quantum interference, quantum confinement, and classical size effects. These studies will allow researchers to extract the key characteristics that are relevant for the operation of future nanoscale devices. The proposed science and supporting infrastructure at The University of Tennessee and nearby Center for Nanophase Materials Sciences provide an excellent setting for the education and training of internationally competitive students and postdocs. These young people will take their place in the highly skilled workforce that will continue to drive innovation and prosperity in today's high-tech society.Quantum electrical transport is at the heart of nanoscience. The idea of assembling single atoms or molecules and small chemical groups into much faster and powerful electronic devices no longer belongs to the realm of science fiction. Recently, researchers wired up their first molecular-scale electronic circuits, an achievement Science Magazine selected as the "Breakthrough of 2001". Researchers now face the daunting task of taking this new technology from basic electronic components to complex integrated circuits that can rival silicon's low cost performance and reliability. Reaching that level of complexity requires several scientific breakthroughs besides the obviously needed revolution in chip fabrication and design. In this project, researchers will align individual metal atoms into "atomic wires" or arrange the atoms into a perfectly smooth film that is only a few atom layers thick. These nanostructured materials are ideal model systems that will allow researchers to explore the fundamentals and key characteristics of electrical currents in nanophase materials. Quantum transport marries the most fundamental laws of nature, namely quantum mechanics, with applied electrical engineering and emerging materials technologies. The proposed science and supporting infrastructure at The University of Tennessee and the nearby Center for Nanophase Materials Sciences of the Department of Energy provide an excellent setting for the education and training of internationally competitive students and postdocs using specialized national research facilities. These young people will take their place in the highly skilled workforce that will continue to drive innovation and prosperity in today's high-tech society.
本研究的主要目的是研究硅衬底上纳米薄膜结构中的量子电输运。该项目侧重于原子线阵列和原子光滑金属薄膜。在一定的生长条件下,单个金属原子“自组装”成平行“原子线”的宏观域,线之间的间距相等但可调。这些阵列非常适合研究量子电输运的基本原理、系统维数的函数和费米表面拓扑结构,使用纳米探针,如四尖扫描隧道显微镜,以及宏观测量探针,如电子束或激光束。原子光滑的金属薄膜将通过一种由量子尺寸效应驱动的新型自组装机制合成,该机制允许系统地研究与量子干涉、量子限制和经典尺寸效应相关的电导率。这些研究将使研究人员能够提取出与未来纳米级设备操作相关的关键特征。田纳西大学和附近的纳米材料科学中心拟议的科学和支持基础设施为具有国际竞争力的学生和博士后的教育和培训提供了良好的环境。这些年轻人将在高技能劳动力中占据一席之地,在当今高科技社会中继续推动创新和繁荣。量子电输运是纳米科学的核心。将单个原子或分子和小的化学基团组装成更快、更强大的电子设备的想法不再属于科幻小说的领域。最近,研究人员将他们的首个分子级电子电路连接起来,这一成就被《科学》杂志选为“2001年的重大突破”。研究人员现在面临着一项艰巨的任务,即将这种新技术从基本的电子元件应用到复杂的集成电路中,从而可以与硅的低成本性能和可靠性相媲美。要达到这种复杂程度,除了芯片制造和设计方面明显需要的革命之外,还需要几项科学突破。在这个项目中,研究人员将单个金属原子排列成“原子线”,或者将原子排列成只有几个原子层厚的完美光滑的薄膜。这些纳米结构材料是理想的模型系统,将允许研究人员探索纳米材料中电流的基本原理和关键特性。量子输运将最基本的自然定律,即量子力学,与应用电气工程和新兴材料技术结合在一起。田纳西大学和附近能源部纳米材料科学中心的拟议科学和支持基础设施为使用专门的国家研究设施的具有国际竞争力的学生和博士后的教育和培训提供了良好的环境。这些年轻人将在高技能劳动力中占据一席之地,在当今高科技社会中继续推动创新和繁荣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hanno Weitering其他文献

Luttingers wake
卢廷格液体的量子激发
  • DOI:
    10.1038/nphys2074
  • 发表时间:
    2011-08-07
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Hanno Weitering
  • 通讯作者:
    Hanno Weitering

Hanno Weitering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hanno Weitering', 18)}}的其他基金

Tuning electronic instabilities in triangular surface lattices via subsurface doping
通过次表面掺杂调节三角形表面晶格中的电子不稳定性
  • 批准号:
    1410265
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Neutron Scattering Studies of Spin and Lattice Dynamics in Electron-Doped Iron and Copper-Based High-Temperature Superconductors
电子掺杂铁基和铜基高温超导体中自旋和晶格动力学的中子散射研究
  • 批准号:
    1063866
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Molecular Beam Epitaxy Apparatus with In-Situ Scanning Probe Capabilities for the Synthesis and Study of Advanced Energy Materials
MRI:获取具有原位扫描探针功能的分子束外延装置,用于先进能源材料的合成和研究
  • 批准号:
    1040086
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Electron and Lattice Dynamics Across Phase Transitions in Triangular Lattices and Atom Chains on Surfaces
表面三角形晶格和原子链中相变的电子和晶格动力学
  • 批准号:
    1005488
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of an Ultrahigh-Resolution Photoelectron Spectrometer for Education and Research on Complex and Low-Dimensional Materials
MRI:购买超高分辨率光电子能谱仪,用于复杂和低维材料的教育和研究
  • 批准号:
    0421153
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Exploration of Localization Phenomena at Ultra Thin Metal/ Semiconductor Interfaces: Going Beyond Surface Spectroscopies
超薄金属/半导体界面局域现象的探索:超越表面光谱
  • 批准号:
    9705246
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Electronic Transport in Nanostructured and Amorphous Semiconductor Thin Films
纳米结构和非晶半导体薄膜中的电子传输
  • 批准号:
    1608937
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Strain dependence of electronic transport in semiconducting oxide thin films
半导体氧化物薄膜中电子传输的应变依赖性
  • 批准号:
    317627108
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
EAPSI: Exploring Nano-scale Thermal Transport in Semiconductor Thin Films for the Advancement of Modern Electronic Devices
EAPSI:探索半导体薄膜中的纳米级热传输以促进现代电子设备的进步
  • 批准号:
    1514658
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship Award
Low-dimensional electronic magneto-transport in epitaxial ultra-thin Bi and Bi-Sb alloy films: impurities, structure, confinement and disorder.
外延超薄 Bi 和 Bi-Sb 合金薄膜中的低维电子磁输运:杂质、结构、限制和无序。
  • 批准号:
    254443332
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grants
An investigation into the electronic transport properties of organic semiconductors and thin film devices
有机半导体和薄膜器件的电子传输特性研究
  • 批准号:
    36399-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
An investigation into the electronic transport properties of organic semiconductors and thin film devices
有机半导体和薄膜器件的电子传输特性研究
  • 批准号:
    36399-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
An investigation into the electronic transport properties of organic semiconductors and thin film devices
有机半导体和薄膜器件的电子传输特性研究
  • 批准号:
    36399-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Unraveling charge transport property and electronic states of organic thin films and their interfaces with structure-controlled films
揭示有机薄膜的电荷传输特性和电子态及其与结构控制薄膜的界面
  • 批准号:
    20245039
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
An investigation into the electronic transport properties of organic semiconductors and thin film devices
有机半导体和薄膜器件的电子传输特性研究
  • 批准号:
    36399-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
An investigation into the electronic transport properties of organic semiconductors and thin film devices
有机半导体和薄膜器件的电子传输特性研究
  • 批准号:
    36399-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了