Topics in Algebraic Geometry

代数几何专题

基本信息

项目摘要

An algebraic surface of type K3 is a 2-dimensional analog of an ellipticcurve. It is characterized by the property that its tangent bundle is nottrivial but the first Chern class is trivial. Its group of algebraicautomorphisms is a discrete group sometimes infinite sometimes finite and its structure is closely related to the structure of the orthogonal group of the the Picard group of divisor classes equipped with the intersection product. The structure of the automorphism group of a complex K3 surface is well understood thanks to the availability of trascendental methods based on the study of the integration of a holomorphic 2-form on the surface over transcendental cycles. No such methods are available in the case when the characteristic of the ground field is positive. In the proposal the principal investigator outlines several new approaches to the study of automorphism groups of K3 surfaces over such fields. Some of them based on the study of possible automorphisms of finite order which will allow to compute the character of the group in its representation on l-adic cohomology. Other approaches use the relationship between the Picard lattice and the 24-dimensional Leech lattice. The principal investigator will also study some applications to coding theory and cryptology related to K3 surfaces over a finite field.The study of symmetries of mathematical structures is one of the mostimportant and oldest problems in mathematics. A symmetry group of aRiemann surface or an algebraic curve is now well understood. Much less is known about symmetries of higher dimensional algebraic varieties. Theprincipal inverstigator proposes such study for a class of algebraicsurfaces known as K3 surfaces which are two-dimensional analogs ofelliptic curves. The symmetry groups of K3 surfaces are related tosymmetry of other objects, for example lattices in hyperbolic spaces and convex polyhedra. Many known abstract infinite and finite groups admit a beautiful realization as symmetry groups of K3 surfaces. Applications of symmetry groups of elliptic curves over finite fields to coding theory and cryptology is well known. It is expected that the knowledge of symmetry groups of K3 surfaces over finite field will find new applications to these theories.
K3型代数曲面是椭圆曲线的二维模拟。 它的特征是它的切丛不是平凡的,但第一个Chern类是平凡的。它的代数自同构群是一个离散群,有时是无限的,有时是有限的,它的结构与具有交积的因子类的Picard群的正交群的结构密切相关.复杂K3曲面的自同构群的结构是很好地理解的,这要归功于基于研究全纯2-形式在超越圈上的积分的超越方法的可用性。当地面场的特性为正时,没有这样的方法可用。在该提案中,主要研究者概述了几种新的方法来研究K3曲面的自同构群。他们中的一些人的基础上研究可能的自同构的有限秩序,这将允许计算字符的群体在其代表性的L-进上同调。其他方法使用Picard晶格和24维Leech晶格之间的关系。主要研究者还将研究有限域上K3曲面在编码理论和密码学中的一些应用。数学结构对称性的研究是数学中最重要和最古老的问题之一。黎曼曲面或代数曲线的对称群现在已经很好地理解了.关于高维代数簇的对称性知之甚少。主要inverstigator提出了这样的研究一类algebraicsurfaces被称为K3曲面这是二维类似物的椭圆曲线。K3曲面的对称群与其他对象的对称性有关,例如双曲空间中的格和凸多面体。许多已知的抽象无限群和有限群都有一个美丽的实现,即K3曲面的对称群。 有限域上椭圆曲线的对称群在编码理论和密码学中的应用是众所周知的。我们期望有限域上K3曲面的对称群知识能在这些理论中找到新的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Dolgachev其他文献

Bitangent surfaces and involutions of quartic surfaces
双切面和四次曲面的对合
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Igor Dolgachev;Shigeyuki Kondo
  • 通讯作者:
    Shigeyuki Kondo
15-nodal quartic surfaces. Part II: The automorphism group
15 节点四次曲面。
The rationality of the moduli spaces of Coble surfaces and of nodal Enriques surfaces
Coble曲面和节点Enriques曲面模空间的合理性
  • DOI:
    10.1070/im2013v077n03abeh002646
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Igor Dolgachev;Shigeyuki Kondo
  • 通讯作者:
    Shigeyuki Kondo
教師による非認知能力の評価手法の開発―社会情動能力に着目して―
开发一种教师评估非认知能力的方法 - 关注社会情感能力 -
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Igor Dolgachev;Ichiro Shimada;S. Takayama;島田英昭・林寛平・宮_樹夫
  • 通讯作者:
    島田英昭・林寛平・宮_樹夫
Geometry of the Wiman–Edge pencil and the Wiman curve
维曼边缘铅笔的几何形状和维曼曲线
  • DOI:
    10.1007/s10711-020-00517-7
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Igor Dolgachev;Benson Farb;Eduard Looijenga
  • 通讯作者:
    Eduard Looijenga

Igor Dolgachev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Dolgachev', 18)}}的其他基金

Studies in Algebraic Geometry
代数几何研究
  • 批准号:
    9970460
  • 财政年份:
    1999
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Algebraic Geometry
数学科学:代数几何研究
  • 批准号:
    9623041
  • 财政年份:
    1996
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Algebraic Geometry
数学科学:代数几何研究
  • 批准号:
    9304732
  • 财政年份:
    1993
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Algebraic Geometry
数学科学:代数几何研究
  • 批准号:
    9106751
  • 财政年份:
    1991
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topics in Algebraic Spline Geometry
代数样条几何主题
  • 批准号:
    2482950
  • 财政年份:
    2021
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Studentship
Topics in Algebraic Geometry and Number Theory
代数几何和数论专题
  • 批准号:
    2443753
  • 财政年份:
    2020
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Studentship
Topics in algebraic geometry
代数几何专题
  • 批准号:
    RGPIN-2016-04730
  • 财政年份:
    2020
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and arithmetic dynamics, Diophantine Geometry, and related topics
代数和算术动力学、丢番图几何及相关主题
  • 批准号:
    20K14300
  • 财政年份:
    2020
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in algebraic geometry
代数几何专题
  • 批准号:
    RGPIN-2016-04730
  • 财政年份:
    2019
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Algebraic Geometry
代数几何专题
  • 批准号:
    1801870
  • 财政年份:
    2018
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Continuing Grant
Topics in algebraic geometry
代数几何专题
  • 批准号:
    RGPIN-2016-04730
  • 财政年份:
    2018
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in algebraic geometry
代数几何专题
  • 批准号:
    RGPIN-2016-04730
  • 财政年份:
    2017
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in algebraic geometry
代数几何专题
  • 批准号:
    RGPIN-2016-04730
  • 财政年份:
    2016
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Algebraic Geometry: Gromov-Witten Theory and Donaldson-Thomas Theory
代数几何专题:格罗莫夫-维滕理论和唐纳森-托马斯理论
  • 批准号:
    1600997
  • 财政年份:
    2016
  • 资助金额:
    $ 13.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了