The Critical Heat Flux Condition in Micro-Channels
微通道中的临界热通量条件
基本信息
- 批准号:0245642
- 负责人:
- 金额:$ 50.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two-phase heat transfer has significant advantages over single-phase heat transfer, but a crucially important factor that must be taken into account in the design of micro-channel boiling heat transfer is the critical heat flux (CHF) condition, which sets the upper thermal limit on the micro-channel operation. Literature on the CHF condition in micro-channels is quite sparse and the applicability to micro-channels of existing CHF correlations for conventionally sized channels is unknown; therefore better capability to predict the CHF condition for micro-channels is needed. The objectives of this project are to develop a better quantitative and qualitative understanding of the CHF condition in single and multiple, parallel micro-channels, to assess the applicability of current CHF correlations to micro-channels, to develop a technique to minimize or eliminate flow instabilities and flow maldistribution in multiple micro-channels, and to develop a phenomenological model of the CHF condition that takes into account the confounding effects of conduction in the solid. To accomplish these objectives, both experimental and analytical investigations are performed. In the experimental study, circular tubes and rectangular channels heated on all sides are tested over a range of channel diameters, number of channels in parallel, flow rates, pressures, and power levels. The test section configurations include single circular tubes with varying tube-wall materials and wall thicknesses, multiple channels machined into large copper blocks, and microfluidic systems fabricated on silicon wafers, all instrumented with fast-responding arrays of temperature and pressure sensors. Two fluids, refrigerant R123 and water, are used. Because flow instabilities can be significant with boiling in multiple parallel channels, time-varying data are obtained and the channel geometry is modified in both on the microfluidic and copper block systems by the addition of upstream flow restrictions to reduce or eliminate instabilities; these same channel modifications are used to minimize or eliminate flow maldistribution. High-speed, microscopic flow-visualization studies are undertaken to complement the quantitative measurements. In the analytical study, a phenomenological model that includes the effects of local fluid and solid conditions and dynamic contact angles is produced by extending the previously developed CHF model for pool boiling to flow boiling in micro-channels. Effects due to wall thermal conductivity and thermal capacity (density-specific heat product) are incorporated while evaluating local wall temperature conditions. The model is tested against the single-tube CHF data. Differences between the CHF condition in single and multiple, parallel channels are clearly elucidated through experiments in the microfluidic and copper-block systems. Novel schemes of incorporating upstream individual flow restrictors in the microfluidic system and individual removable inserts in the copper-block system are used to study their effects on improving CHF in parallel-channel operation. Broader impactA better method for prediction of CHF will permit engineers to pursue ideas that cannot be implemented now because of uncertainties in thermal operating limits, such as higher-power electronics, computers, lasers, etc. The research findings are presented at national conferences, published in appropriate journals, and shared with industry and national laboratories during visits and seminars. To enhance the value of this research, an international short course on micro-channel heat transfer is held in conjunction with the ASME Rochester Heat Transfer Chapter. Also, the project enhances educational opportunities through the partnering of a PhD-granting institution (Rensselaer Polytechnic Institute) with one that does not grant PhD degrees (Rochester Institute of Technology). Minority graduate students are recruited from historically black colleges and universities. Because early exposure to research has been proven to be a significant spur for undergraduates to continue for a graduate degree, promising undergraduates are identified to participate in the project.
两相传热比单相传热具有显著的优势,但临界热流密度(CHF)条件是微通道沸腾传热设计中必须考虑的一个关键因素,它决定了微通道运行的热上限。 关于微通道中的CHF条件的文献相当稀少,并且对于常规尺寸的通道的现有CHF相关性对微通道的适用性是未知的;因此需要更好的预测微通道的CHF条件的能力。 该项目的目标是对单个和多个平行微通道中的CHF条件进行更好的定量和定性理解,以评估当前CHF相关性对微通道的适用性,开发一种技术以最小化或消除多个微通道中的流动不稳定性和流动分布不均,并开发一个现象学模型的CHF条件,考虑到在固体中的传导的混淆效果。 为了实现这些目标,进行实验和分析研究。 在实验研究中,圆管和矩形通道加热的所有方面进行了测试,在一系列的通道直径,平行的通道,流量,压力和功率水平的数量。 测试部分配置包括具有不同管壁材料和壁厚的单个圆管,加工成大型铜块的多个通道,以及在硅晶片上制造的微流体系统,所有这些都配备了快速响应的温度和压力传感器阵列。 使用两种流体,制冷剂R123和水。 由于流动不稳定性可能是显着的沸腾在多个平行通道,随时间变化的数据被获得和通道的几何形状被修改的微流体和铜块系统通过添加上游流动限制,以减少或消除不稳定性;这些相同的通道修改用于最小化或消除流量分布不均。 高速,微观流动可视化研究进行补充定量测量。 在分析研究中,一个唯象模型,包括局部流体和固体条件和动态接触角的影响,通过扩展先前开发的CHF模型池沸腾流动沸腾在微通道。 由于壁导热系数和热容量(密度比热产品)的影响,同时评估局部壁温条件。 该模型进行了测试,对单管CHF数据。 CHF条件在单个和多个,平行通道之间的差异,清楚地阐明通过实验中的微流体和铜块系统。 将上游的个人流量限制器的微流控系统和个人可拆卸的插入物中的铜块系统的新方案被用来研究它们对改善CHF在并行通道操作的效果。更广泛的影响一个更好的方法来预测CHF将允许工程师追求的想法,现在不能实施,因为在热操作限制,如高功率电子,计算机,激光等的不确定性的研究结果是在国家会议上提出,发表在适当的期刊,并在访问和研讨会期间与行业和国家实验室共享。 为了提高这项研究的价值,国际短期课程的微通道传热结合ASME罗切斯特传热章。 此外,该项目还通过一个授予博士学位的机构(伦斯勒理工学院)与一个不授予博士学位的机构(罗切斯特理工学院)建立伙伴关系,增加了教育机会。 少数民族研究生是从历史悠久的黑人学院和大学招收的。 由于早期接触研究已被证明是一个显着的刺激本科生继续研究生学位,有前途的本科生被确定参加该项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Jensen其他文献
Comparison of the effects of fourth-generation fluoroquinolones on corneal re-epithelialization in rabbit eyes
第四代氟喹诺酮类药物对兔眼角膜再上皮化作用的比较
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
M. Moshirfar;J. Chew;L. Werner;Jay J. Meyer;B. Hunter;S. Stevens;Michael Jensen;G. Kleinmann;N. Mamalis - 通讯作者:
N. Mamalis
Teaching Teachers to Use Computer Assisted Learning Effectively: Experimental and Quasi-Experimental Evidence
教教师有效地使用计算机辅助学习:实验和准实验证据
- DOI:
10.2139/ssrn.4810603 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Philip Oreopoulos;Chloe Gibbs;Michael Jensen;Joseph Price - 通讯作者:
Joseph Price
The Reaction of Cyanate with the a and b Subunits in Hemoglobin: Effects of Oxygenation, Phosphates, and Carbon Dioxide
- DOI:
10.1016/s0021-9258(19)43193-1 - 发表时间:
1973-12-01 - 期刊:
- 影响因子:
- 作者:
Michael Jensen;David G. Nathan;H. Franklin Bunn - 通讯作者:
H. Franklin Bunn
ARM Research In The Equatorial Western Pacific: A Decade And Counting
ARM 在赤道西太平洋的研究:十年且仍在继续
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
C. Long;S. McFarlane;A. D. Genio;P. Minnis;T. Ackerman;J. Mather;J. Comstock;G. Mace;Michael Jensen;C. Jakob - 通讯作者:
C. Jakob
Russian trolls targeted Australian voters on Twitter via #auspol and #MH17
俄罗斯巨魔在 Twitter 上针对澳大利亚选民
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
T. Sear;Michael Jensen - 通讯作者:
Michael Jensen
Michael Jensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Jensen', 18)}}的其他基金
IGERT: An Entrepreneurial Ph.D. Education in Fuel Cell Manufacturing, Materials Development, and Modeling
IGERT:创业博士
- 批准号:
0504361 - 财政年份:2005
- 资助金额:
$ 50.86万 - 项目类别:
Continuing Grant
Plastics Engineering Technology Scholarships
塑料工程技术奖学金
- 批准号:
0220827 - 财政年份:2002
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
Conference: Special Sessions to Encourage Collaboration & Interaction Across Disciplinary Boundaries at the IEEE Internat'l Symp. to be held in Salt Lake City, Utah 7/16-21/20
会议:鼓励合作的特别会议
- 批准号:
0002139 - 财政年份:2000
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
Workshop on RF Micromachining and MEMS Technology for Wireless Communications Systems
无线通信系统射频微加工和 MEMS 技术研讨会
- 批准号:
9911096 - 财政年份:1999
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
An Experimental and Numerical Investigation of Turbulent Variable Fluid Property Heat Transfer and Fluid Flow in Enhanced Tubes
强化管内湍流变流体性质传热和流体流动的实验与数值研究
- 批准号:
9412596 - 财政年份:1994
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
An Experimental and Numerical Investigation of Shellside Boiling in Horizontal Tube Bundles
水平管束壳程沸腾的实验与数值研究
- 批准号:
9008435 - 财政年份:1990
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
Critical Heat Flux in Horizontal Inline and Staggered Tube Arrays (REU Supplement)
水平直列和交错管阵列中的临界热通量(REU 补充)
- 批准号:
8704693 - 财政年份:1987
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
Two-Phase Crossflow Boiling Heat Transfer in Horizontal Inline and Staggered Tube Arrays
水平直列和交错管阵列中的两相横流沸腾传热
- 批准号:
8319596 - 财政年份:1984
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
The Effect of Twisted-Tape Swirl Generators on Saturated Forced-Convection Boiling Heat Transfer (Mechanical Engineering)
扭带旋流发生器对饱和强制对流沸腾传热的影响(机械工程)
- 批准号:
8117226 - 财政年份:1982
- 资助金额:
$ 50.86万 - 项目类别:
Continuing Grant
Travel to Attend Nato Advanced Study Institute On: Two-PhaseFlows and Heat Transfer, Istanbul, Turkey, August 16 - 27, 1976
前往参加北约高级研究所:两相流和传热,土耳其伊斯坦布尔,1976 年 8 月 16 日至 27 日
- 批准号:
7623589 - 财政年份:1976
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
相似国自然基金
环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
- 批准号:50676006
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Elucidation of critical heat flux improvement mechanism by evaluation of liquid wicking performance during heating of porous heat transfer surface
通过评估多孔传热表面加热过程中液体芯吸性能来阐明临界热通量改善机制
- 批准号:
23K13264 - 财政年份:2023
- 资助金额:
$ 50.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Reliable computational modelling of boiling for high-void and the critical heat flux
高空隙沸腾和临界热通量的可靠计算模型
- 批准号:
EP/X039927/1 - 财政年份:2023
- 资助金额:
$ 50.86万 - 项目类别:
Research Grant
CAREER: Universal Dynamics of Thermal Fluctuations in Pool Boiling and Their Role in Predicting Critical Heat Flux
职业:池沸腾中热波动的普遍动力学及其在预测临界热通量中的作用
- 批准号:
2145075 - 财政年份:2022
- 资助金额:
$ 50.86万 - 项目类别:
Continuing Grant
Prediction of critical heat flux of subcooled flow boiling in micro-slit-channel
微缝通道过冷流动沸腾临界热通量预测
- 批准号:
22K03960 - 财政年份:2022
- 资助金额:
$ 50.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenge to enhancements of nucleate boiling and critical heat flux using LISS-microfabricated metallic surfaces
使用 LISS 微加工金属表面增强核沸腾和临界热通量的挑战
- 批准号:
21K20409 - 财政年份:2021
- 资助金额:
$ 50.86万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
EAGER: Uncovering the Physical Mechanism behind Flow Boiling Critical Heat Flux
EAGER:揭示流动沸腾临界热通量背后的物理机制
- 批准号:
2138247 - 财政年份:2021
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
Significant enhancement of critical heat flux with three-dimensional porous-media manufacturing and surface modification technologies of heat-transfer surface structure
三维多孔介质制造和传热表面结构表面改性技术显着提高临界热通量
- 批准号:
21K04945 - 财政年份:2021
- 资助金额:
$ 50.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Machine Learning Approach to Unsteady Fluid Flow Characteristics in Boiling Approaching Critical Heat Flux
接近临界热通量沸腾时不稳定流体流动特性的机器学习方法
- 批准号:
2657669 - 财政年份:2021
- 资助金额:
$ 50.86万 - 项目类别:
Studentship
Deciphering the Physics of Critical Heat Flux (CHF)
破译临界热通量 (CHF) 的物理原理
- 批准号:
1934354 - 财政年份:2020
- 资助金额:
$ 50.86万 - 项目类别:
Standard Grant
Enhancement of Critical Heat Flux of immiscible mixtures flow boiling in a channel with unheated space
不混溶混合物在未加热空间的通道中流动沸腾的临界热通量的增强
- 批准号:
20K04315 - 财政年份:2020
- 资助金额:
$ 50.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)