A Machine Learning Approach to Unsteady Fluid Flow Characteristics in Boiling Approaching Critical Heat Flux
接近临界热通量沸腾时不稳定流体流动特性的机器学习方法
基本信息
- 批准号:2657669
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project looks to discover the reasoning behind particularly good heat transfer abilities of boiling fluids approaching Critical Heat Flux (CHF) in a region known as Departure from Nucleate Boiling (DNB). The student will aim to discover the physical reasoning behind oscillatory behaviour as fluid undergoes DNB to understand how a boiling fluid can be kept in this region for substantial time. Outcomes of this work will provide a working knowledge of the triggers which transform a fluid from the DNB region to CHF and transition boiling beyond. A key facet of this project is determining how best to integrate Machine Learning (ML) technology to advance understanding of physical behaviour and improve speed of computations. Provided the project is successful in this regard, this will ultimately deliver the ability to design systems which can safely operate much closer to CHF than previously. Therefore, this project presents the potential to increase heat transfer through boiling for a wide range of applications. To do so, the student will be systematically developing advanced computational tools to understand the physical behaviour behind each stage of the project. These tools will combine the cutting edge of Computational Fluid Dynamics (CFD) and Machine Learning (ML).
该项目旨在发现在一个被称为偏离核沸腾(DNB)的区域中接近临界热通量(CHF)的沸腾流体的特别好的传热能力背后的原因。学生的目标是发现振荡行为背后的物理推理,因为流体经历DNB,以了解沸腾流体如何在该区域保持相当长的时间。这项工作的结果将提供一个触发器的工作知识,将流体从DNB区域转换为CHF和过渡沸腾。该项目的一个关键方面是确定如何最好地集成机器学习(ML)技术,以促进对物理行为的理解并提高计算速度。如果该项目在这方面取得成功,这将最终提供设计系统的能力,这些系统可以比以前更接近CHF安全运行。因此,该项目提出了通过沸腾增加传热的潜力,用于广泛的应用。为此,学生将系统地开发先进的计算工具,以了解项目每个阶段背后的物理行为。这些工具将联合收割机结合计算流体动力学(CFD)和机器学习(ML)的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Doctoral Dissertation Research: Predicting the location of hominin cave fossil sites with a machine learning approach
博士论文研究:利用机器学习方法预测古人类洞穴化石遗址的位置
- 批准号:
2341328 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
- 批准号:
2309367 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A machine learning approach to constraining ice volume and potential loss in High Mountain Asia
限制亚洲高山冰量和潜在损失的机器学习方法
- 批准号:
2890090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Creation of the Universal Descriptor of the Adsorbates Interaction on Heterogenous Catalysts by DOS Decomposition Approach and Machine Learning
通过 DOS 分解方法和机器学习创建异质催化剂上吸附物相互作用的通用描述符
- 批准号:
23K04890 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
- 批准号:
2311582 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
PRIMES: A Biological and Socio-Environmental Approach to Machine Learning for Equitable and Proactive Cancer and Health Screening
PRIMES:机器学习的生物和社会环境方法,用于公平和主动的癌症和健康筛查
- 批准号:
2331502 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The predicting model of responders in cognitive-behavioral therapy for panic disorder: A machine learning approach
恐慌症认知行为治疗中反应者的预测模型:机器学习方法
- 批准号:
23K02987 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
- 批准号:
DP230101671 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
- 批准号:
10600819 - 财政年份:2023
- 资助金额:
-- - 项目类别: