Local Langlands Theory for Real Lie Groups
实李群的局部朗兰兹理论
基本信息
- 批准号:0300106
- 负责人:
- 金额:$ 8.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is most naturally understood in terms of the geometric framework of the representation theoretic part of the local Langlands conjecture, a framework which originated in the work of Deligne and Kazhdan-Lusztig. Roughly speaking, the conjecture asserts that the representation theory of a reductive algebraic group over a local field is dual to a geometric category of equivariant sheaves on an associated dual space. In this formulation, the Arthur conjectures may be interpreted as suggesting a very precise relationship between local components of automorphic forms and the microlocal geometry of the dual space (codified in the characteristic variety of certain equivariant perverse sheaves). When the local field is archimedian, the local Langlands conjecture is a theorem, but the Arthur conjectures are ineffective in the sense that they fall well short of providing a conjectural enumeration of the automorphic spectrum. We propose a project to extend the framework of the local Langlands conjecture to real groups that arise as nonalgebraic "metaplectic" double covers of the real points of algebraic groups. Our approach is predicated on an intricate relationship between the algebraic and nonalgebraic theories which may be interpreted as a kind of ramified local Shimura correspondence. This allows us to pursue some of Arthur's ideas in the nonalgebraic setting. Finally in a separate project we propose a series of nontrivial and computationally powerful restrictions on the form that the characteristic variety computations can take. (These computations are relevant for the Arthur theory for both algebraic and nonalgebraic groups.) The restrictions we pursue give insight into making the Arthur conjectures effective for real groups.The proposed research deals with understanding the theory of semisimple (real) Lie groups. These objects arise most naturally as symmetries of finite-dimensional structures; the modifier "semisimple" means, roughly speaking, that the Lie group cannot be broken into smaller Lie groups. An example of historical import is the Lie group of rotations in three dimensions (which codifies the symmetry of the spherically symmetric hydrogen atom). One is often interested in how Lie groups can act on infinite-dimensional linear spaces (like the solution space of the Schroedinger equation for the hydrogen atom). Such actions are called representations. In the 1960's, Langlands suggested an astonishing relationship between the representation theory of semisimple Lie groups and a set of data of essentially arithmetic origin. This is remarkable because it connects two subjects-representation theory and number theory-which are ostensible unrelated. Subsequently the arithmetic parameters that Langlands suggested (and much more of Langlands ideas) became understood as a shadow of a deep geometric theory of singular algebraic varieties. The proposer's research seeks to extend some of the ideas of Langlands, and consequent refinements due to Arthur, to a larger class of "nonalgebraic" Lie groups than originally considered in the original "algebraic" setting. (The distinction is a little too delicate to make precise here, but suffice it to say that the nonalgebraic setting has been demonstrated to be very interesting from many perspectives.) Our research has a representation theoretic part and a geometric part. Qualitatively the representation theoretic part is predicated on a precise relationship between the nonalgebraic and algebraic theories (revealing new information about each) and the geometric part turns on a latent structure of the parameter set mentioned above. It is worth mentioning that for particular examples, these latent structures amount to a lovely (and very concrete) combinatoric which is accessible to bright undergraduates; I plan to direct undergraduate research projects based on this combinatorial theory.
这项研究最自然地被理解为局部朗兰兹猜想的表征理论部分的几何框架,该框架起源于Deligne和Kazhdan-Lusztig的工作。粗略地说,该猜想断言局部域上的约化代数群的表示理论是对偶于相伴对偶空间上的等变层的几何范畴的。在这个公式中,Arthur猜想可以被解释为提出了自同构形的局部分量和对偶空间的微局部几何之间的非常精确的关系(编码在某些等变倒叶的特征簇中)。当局域场是阿基米德时,局域朗兰兹猜想是一个定理,但亚瑟猜想在某种意义上是无效的,因为它们不能提供自同构谱的猜想计数。我们提出了一个方案,将局部朗兰兹猜想的框架推广到作为代数群实点的非代数“亚交”二重覆盖的实群。我们的方法是基于代数理论和非代数理论之间的复杂关系,这种关系可以解释为一种分支的局部Shimura对应。这使我们能够在非代数的环境中追寻亚瑟的一些思想。最后,在一个单独的项目中,我们提出了一系列对特征变化计算可以采用的形式的非平凡和计算上强大的限制。(对于代数群和非代数群,这些计算都与Arthur理论有关。)我们追求的限制给了我们使Arthur猜想对实群有效的洞察力。拟议的研究涉及理解半单(实)李群的理论。这些物体最自然地以有限维结构的对称性出现;修饰词“半简单”的意思是,粗略地说,李群不能被分成更小的李群。一个具有历史意义的例子是三维旋转的李群(它编码了球对称氢原子的对称性)。人们通常感兴趣的是李群如何作用于无限维线性空间(如氢原子的薛定谔方程的解空间)。这样的行为被称为表象。在20世纪60年代的S中,朗兰兹提出了半单李群的表示理论与一组本质上是算术起源的数据之间惊人的关系。这是值得注意的,因为它连接了两个表面上无关的学科--表象理论和数论。随后,朗兰兹提出的算术参数(以及更多的朗兰兹思想)被理解为奇异代数簇的深层几何理论的影子。这位提出者的研究试图将朗兰兹的一些思想,以及亚瑟的一些后续改进,推广到比最初的“代数”环境中所考虑的更大的一类“非代数”李群。(这里的区别有点太微妙了,不能说得太准确,但可以说,从许多角度来看,非代数设置已经被证明非常有趣。)我们的研究分为表象理论部分和几何部分。定性地,表示理论部分基于非代数理论和代数理论之间的精确关系(揭示关于每个理论的新信息),而几何部分则开启上述参数集的潜在结构。值得一提的是,对于特定的例子,这些潜在的结构相当于一个可爱的(非常具体的)组合,对聪明的本科生来说是可以接触到的;我计划基于这个组合理论来指导本科生的研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Trapa其他文献
Regular orbits of symmetric subgroup on partial flag varieties
偏旗簇上对称子群的正则轨道
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dan Ciubotaru;Kyo Nishiyama;Peter Trapa - 通讯作者:
Peter Trapa
Peter Trapa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Trapa', 18)}}的其他基金
Unitary representations of reductive Lie groups
还原李群的酉表示
- 批准号:
1302237 - 财政年份:2013
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Atlas of Lie Groups and Representations: Unitary Representations
FRG:协作研究:李群和表示图集:酉表示
- 批准号:
0968060 - 财政年份:2010
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Atlas of Lie Groups and Representations
FRG:协作研究:李群和表示图集
- 批准号:
0554118 - 财政年份:2006
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Geometric aspects of the representation theory of Lie groups
李群表示论的几何方面
- 批准号:
0071606 - 财政年份:2000
- 资助金额:
$ 8.99万 - 项目类别:
Fellowship Award
相似国自然基金
模p Langlands对应与Jacquet-Langlands对应研究
- 批准号:12371011
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
使用endo-参数探索局部Langlands 对应
- 批准号:21ZR1441900
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
例外群G_2的Langlands对应与Arthur重数猜想
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
Langlands 纲领和表示理论
- 批准号:11922101
- 批准年份:2019
- 资助金额:120 万元
- 项目类别:优秀青年科学基金项目
模p Langlands 纲领和Shimura曲线的上同调
- 批准号:11971028
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
某些Rapoport-Zink空间的上同调与模p Langlands纲领
- 批准号:11901331
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
顶点算子代数在局部几何Langlands纲领中的应用
- 批准号:10971071
- 批准年份:2009
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
- 批准号:
2101837 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Continuing Grant
A torsion Jacquet-Langlands Transfer via K-theory
通过 K 理论的扭转 Jacquet-Langlands 传递
- 批准号:
EP/V049119/1 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Research Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2101984 - 财政年份:2021
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
- 批准号:
2022303 - 财政年份:2019
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Real groups, Hodge theory, and the Langlands program
实群、霍奇理论和朗兰兹纲领
- 批准号:
DP180101445 - 财政年份:2018
- 资助金额:
$ 8.99万 - 项目类别:
Discovery Projects
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
- 批准号:
1702337 - 财政年份:2017
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Trace Formula, Analytic Number Theory, and Langlands Functoriality
迹公式、解析数论和朗兰兹函子性
- 批准号:
1702176 - 财政年份:2017
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Arc Spaces in the Langlands Program and Geometric Representation Theory
朗兰兹纲领和几何表示理论中的弧空间
- 批准号:
1601934 - 财政年份:2016
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant
Modular Representation Theory and Geometric Langlands Duality
模表示论与几何朗兰兹对偶
- 批准号:
1500890 - 财政年份:2015
- 资助金额:
$ 8.99万 - 项目类别:
Standard Grant