GOALI: NanoEngineering of Magnetic Interfaces for SpinElectronics

GOALI:自旋电子学磁性界面纳米工程

基本信息

  • 批准号:
    0300235
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-05-15 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Spin electronics is quickly becoming one of the new frontiers of 21st century electronics. The central theme of this new technology is spin dependent transport. One of the major current efforts is the development of materials with very high (100%) degree of spin polarization for high performance spin-electronics devices. Although a significant progress has been recently made in showing that some transition metal oxides and some Hoysler alloys do exhibit a high degree of spin polarization, the use of such material in room temperature spin-electronics devices like magnetic tunneling junction (MTJ) have yielded disappointing small effects. These results have reinforced the idea that the performance of such devices is critically dependent on the spin-polarization at the interfaces rather than in the bulk phase of these materials.Intellectual merit: We propose to launch a concentrated effort to understand and to nanoengineer the magnetic interfaces for spin electronics application though a GOALI collaboration between University of Connecticut (UConn) and IBM. In particular we propose to directly measure the electron spin polarization of electrons at the Fermi level by spin resolved photoemission technique. The interface properties will be accessed by growth of ultra-thin oxide and other tunneling barrier materials on top of the relevant ferromagnetic films, which will be facilitated by short photoelectron escape depth, being on the order of the barrier thickness. We propose to lunch a systematic study of such structures fabricated mainly by S. S. P. Parkin (IBM/Almaden) and Scott Chambers (PNNL). The spin-resolved experiments will be performed PI's laboratory at UConn as well as at the U5UA beamline of the National Synchrotron Light Source (NSLS). Combination of PI's expertise in spin-resolved photoemission with the expertise of participating laboratory in films synthesis will provide unique synergy for the proposed task. The program is expected to make significant contribution to understanding and nanoengineering of optimum interfaces for MTJ application. Previous successful collaboration between PI and Co-PI (S.S.P. Parkin) should aid in strong interaction between the university and the industrial partner in this GOALI project.Broader impact: This program will contribute to the future progress of the emerging spin-electronic technology by providing invaluable information on the spin polarization at relevant magnetic interfaces. Close collaboration between the university (UConn), the industry (IBM) and the national labs (PNNL and NSLS) will provide an excellent setting for education and training of graduate students in cutting-edge technology. In particular, close ties with IBM though this GOALI initiative will provide students with first-hand experience on the development of novel electronic technologies . The outreach will include participation of undergraduate students in summer research projects supported through NSF-funded REU program at UConn. Live lab demonstrations and tutorials will be given to groups of K-12 students during organized visits to UConn. The local K-12 science teachers already participating in workshops at UConn. will be given tutorials of how the proposed research impacts the development of new technologies.
自旋电子学正迅速成为21世纪电子学的新前沿之一。这项新技术的中心主题是自旋相关输运。目前的主要工作之一是开发具有非常高(100%)自旋极化度的材料,用于高性能自旋电子器件。尽管最近在表明一些过渡金属氧化物和一些霍伊斯勒合金确实表现出高度的自旋极化方面取得了重大进展,但在室温自旋电子器件(如磁隧道结(MTJ))中使用这种材料产生了令人失望的小效果。这些结果强化了这样一种观点,即这种器件的性能严重依赖于界面上的自旋极化,而不是这些材料的体相。智力优势:我们建议通过康涅狄格大学(UConn)和IBM之间的GOALI合作,集中精力理解和纳米工程自旋电子学应用的磁性界面。我们特别提出用自旋分辨光发射技术直接测量费米能级上电子的自旋极化。通过在相关铁磁薄膜上生长超薄氧化物和其他隧道势垒材料来获得界面性能,这将通过短的光电子逃逸深度(在势垒厚度的数量级上)来促进。我们建议对主要由S. S. P. Parkin (IBM/Almaden)和Scott Chambers (PNNL)制造的这种结构进行系统研究。自旋分辨实验将由PI在康涅狄格大学的实验室以及国家同步加速器光源(NSLS)的U5UA光束线进行。PI在自旋分辨光电发射方面的专业知识与参与薄膜合成的实验室的专业知识的结合将为拟议的任务提供独特的协同作用。预计该项目将对MTJ应用的最佳界面的理解和纳米工程做出重大贡献。PI和Co-PI (S.S.P. Parkin)之前的成功合作应该有助于大学和该GOALI项目的工业合作伙伴之间的强大互动。更广泛的影响:该计划将通过提供有关磁界面的自旋极化的宝贵信息,为新兴的自旋电子技术的未来发展做出贡献。大学(康涅狄格大学),行业(IBM)和国家实验室(PNNL和NSLS)之间的密切合作将为研究生的尖端技术教育和培训提供良好的环境。特别是与IBM的密切联系,尽管这一目标倡议将为学生提供有关新型电子技术开发的第一手经验。该推广活动将包括本科生参与由美国国家科学基金会资助的康涅狄格大学REU项目支持的夏季研究项目。在有组织的康涅狄格大学访问期间,将为K-12学生团体提供现场实验室演示和教程。当地K-12科学教师已经参加了康涅狄格大学的研讨会。将获得关于拟议的研究如何影响新技术发展的教程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Boris Sinkovic其他文献

Changes in electronic structure within NiS<sub><em>x</em></sub> (0.60 <em>< x <</em> 1.53) compound series
  • DOI:
    10.1016/j.vacuum.2024.113806
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Saroj Dahal;Dhan Rana;Boris Sinkovic
  • 通讯作者:
    Boris Sinkovic

Boris Sinkovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Boris Sinkovic', 18)}}的其他基金

Spin- and Circular-Polarized Resonant Photoemission
自旋和圆偏振共振光电发射
  • 批准号:
    9896120
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Spin- and Circular-Polarized Resonant Photoemission
自旋和圆偏振共振光电发射
  • 批准号:
    9625340
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

RET site: A Year-Long NanoEngineering Exploration from the Lab to the Classroom
RET现场:从实验室到课堂长达一年的纳米工程探索
  • 批准号:
    2302127
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A nanoengineering platform for programmable gene editing therapies against rare diseases
用于针对罕见疾病的可编程基因编辑疗法的纳米工程平台
  • 批准号:
    10699037
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
InspiringFuture - Bioinspired nanoengineering of robust films: Multifunctional interfaces for enabling a sustainable future
InspiringFuture - 坚固薄膜的仿生纳米工程:实现可持续未来的多功能接口
  • 批准号:
    EP/X023974/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
REU Site: Ole Miss Nanoengineering Summer REU Program
REU 网站:Ole Miss 纳米工程夏季 REU 项目
  • 批准号:
    2148764
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nanoengineering of Biomaterial Surfaces to Tailor Innate Immune Responses
生物材料表面纳米工程定制先天免疫反应
  • 批准号:
    DP220103543
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Nanoengineering Quantum Electronic Behaviour
纳米工程量子电子行为
  • 批准号:
    572632-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
  • 批准号:
    RGPIN-2019-05411
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nanoengineering Renal Replacement Therapy
纳米工程肾脏替代疗法
  • 批准号:
    10690367
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Nanoengineering Smart and Precise Antimicrobial Polymers
纳米工程智能精密抗菌聚合物
  • 批准号:
    FT210100150
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
  • 批准号:
    RGPIN-2019-05411
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了