InspiringFuture - Bioinspired nanoengineering of robust films: Multifunctional interfaces for enabling a sustainable future

InspiringFuture - 坚固薄膜的仿生纳米工程:实现可持续未来的多功能接口

基本信息

  • 批准号:
    EP/X023974/1
  • 负责人:
  • 金额:
    $ 219.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Scientific breakthroughs into surfaces/interfaces with high overall durability are critical to meet humanity's aspirations for sustainable development. With this context, I seek to undertake fundamental research to nanoengineer new bioinspired liquid-repellent films featuring resistance to sustained high-speed impact, fatigue and continuous flow (shear). My specific objectives are to:1) nanoengineer robust and flexible films with amphiphobicity (i.e. repellence to water and low surface tension liquid) built through thickness2) nanoengineer multi-layered amphiphobic film with mechanical anisotropy and energy dissipative mechanisms for impact/fatigue tolerance3) develop new insights into visco-elasto-plastic failure of the amphiphobic films using electron microscopy integrated nanomechanical tests and exploit them to engineer robust piezocatalytic films 4) perform first high-speed (~350 m/s) liquid/solid particle impact experiments on robust amphiphobic films, demonstrate their anti-icing, anti-scaling and optical transparency potential and to exploit robust piezocatalytic films to introduce continuous flow water remediation for pollution and disease control.The proposed protective nanoengineered films offer a substrate-independent solution for impact/erosion issues that plague transport systems, wind-turbines and offshore installations, and infrastructure exposed to harsh weather. These applications will also benefit from passive anti-icing/scaling potential of our films. With optical transparency, the films may prevent contamination of windows/windshields and handheld devices (e.g. phones/tablets). Furthermore, the piezocatalytic films may be retrofit to industrial/domestic pipes to enable continuous water remediation - this will reduce water waste and the antimicrobial resistance (AMR) burden, and potentially save millions of lives/year. Overall, the fellowship will contribute to sustainable development and meeting the European Green Deal targets.
在具有高整体耐久性的表面/界面方面的科学突破对于满足人类对可持续发展的期望至关重要。在这种情况下,我寻求进行基础研究,以纳米工程新的生物启发的液体排斥膜具有耐持续高速冲击,疲劳和连续流动(剪切)。我的具体目标是:1)具有两亲性的纳米工程坚固和柔性薄膜通过厚度构建的(即,对水和低表面张力液体的排斥性)2)具有机械各向异性和用于冲击/疲劳耐受性的能量耗散机制的纳米工程多层双疏膜3)使用电子显微镜集成纳米机械测试开发对双疏膜的粘弹塑性失效的新见解,并利用它们来设计坚固的压电催化膜4)进行第一次高速(~350 m/s)液体/固体颗粒对坚固的两疏膜的冲击实验,证明了它们的防冰性,抗结垢和光学透明的潜力,并利用强大的压电催化膜引入连续流动的水修复污染和疾病控制。拟议的保护性纳米工程薄膜提供了一个基板独立的解决方案,为影响/侵蚀问题困扰着运输系统、风力涡轮机和海上设施以及暴露在恶劣天气下的基础设施。这些应用也将受益于我们薄膜的被动防冰/防结垢潜力。由于具有光学透明性,该膜可以防止窗户/挡风玻璃和手持设备(例如电话/平板电脑)的污染。此外,压电催化膜可以改装到工业/家用管道中,以实现连续的水治理-这将减少水浪费和抗菌素耐药性(AMR)负担,并可能每年挽救数百万人的生命。总体而言,该研究金将有助于可持续发展和实现欧洲绿色交易目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manish K. Tiwari其他文献

emIn situ/em characterisation of surface roughness and its amplification during multilayer single-track laser powder bed fusion additive manufacturing
多层单道激光粉末床熔融增材制造过程中表面粗糙度的原位/原位表征及其放大
  • DOI:
    10.1016/j.addma.2023.103809
  • 发表时间:
    2023-09-05
  • 期刊:
  • 影响因子:
    11.100
  • 作者:
    Alisha Bhatt;Yuze Huang;Chu Lun Alex Leung;Gowtham Soundarapandiyan;Sebastian Marussi;Saurabh Shah;Robert C. Atwood;Michael E. Fitzpatrick;Manish K. Tiwari;Peter D. Lee
  • 通讯作者:
    Peter D. Lee
Tyr320 is a molecular determinant of the catalytic activity of β-glucosidase from <em>Neosartorya fischeri</em>
  • DOI:
    10.1016/j.ijbiomac.2020.02.117
  • 发表时间:
    2020-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ramasamy Shanmugam;In-Won Kim;Manish K. Tiwari;Hui Gao;Primata Mardina;Devashish Das;Anurag Kumar;Marimuthu Jeya;Sang-Yong Kim;Young Sin Kim;Jung-Kul Lee
  • 通讯作者:
    Jung-Kul Lee
Interventions used to reduce infectious aerosol concentrations in hospitals—a review
用于降低医院感染性气溶胶浓度的干预措施——综述
  • DOI:
    10.1016/j.eclinm.2024.102990
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Gráinne Brady;Fiona Bennin;Rosaline De Koning;Cecilia Vindrola-Padros;Sigrún Eyrúnardóttir Clark;Manish K. Tiwari;Simon Watt;Andrea Ducci;Ryo Torii;Danielle Morris;Elizabeth Lloyd-Dehler;Jerry Slann;Fiona Stevenson;Zarnie Khadjesari;Hakim-Moulay Dehbi;Lena Ciric;Ruth Epstein;John Rubin;Catherine F. Houlihan;Rachael Hunter;Laurence B. Lovat
  • 通讯作者:
    Laurence B. Lovat
Using mixed-fidelity to create effective environments
  • DOI:
    10.1007/s10111-025-00797-7
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Jeremy Opie;Shireen Jaufuraully;Carmen Salvadores Fernandez;Lakchana Mahendran;Adrien Desjardins;Dimitrios Siassakos;Anna L. David;Manish K. Tiwari;Ann Blandford
  • 通讯作者:
    Ann Blandford
Reticular photothermal traps enabling transparent coatings with exceptional all-day icephobicity
网状光热陷阱使透明涂层具有出色的全天防冰性能
  • DOI:
    10.1016/j.nantod.2025.102673
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Jianhui Zhang;Vikramjeet Singh;Prasenjit Kabi;Wei Huang;Simrandeep Bahal;Ioannis Papakonstantinou;Manish K. Tiwari
  • 通讯作者:
    Manish K. Tiwari

Manish K. Tiwari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manish K. Tiwari', 18)}}的其他基金

Nanomanufacturing of Surfaces for Energy Efficient Icing Suppression
用于节能结冰的表面纳米制造
  • 批准号:
    EP/N006577/1
  • 财政年份:
    2015
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant

相似海外基金

Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
  • 批准号:
    DE240101045
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Discovery Early Career Researcher Award
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
  • 批准号:
    2344460
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
  • 批准号:
    2347477
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
Bioinspired photoreceptor and smart neural mimicking technologies
仿生感光器和智能神经模仿技术
  • 批准号:
    DP240100145
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Discovery Projects
Bioinspired Membranes for Water Purification
用于水净化的仿生膜
  • 批准号:
    EP/Y001443/1
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant
Bioinspired Multiplexed Ultrasensitive Biosensing
仿生多重超灵敏生物传感
  • 批准号:
    EP/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant
Bioinspired Ceramifiable Fire-Retardant Composite Coatings
仿生陶瓷阻燃复合涂料
  • 批准号:
    DP240102628
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Discovery Projects
Bioinspired Design: Unforeseen Pathways to impact arising from AHRC funded Bioinspired Textiles Research
仿生设计:AHRC 资助的仿生纺织品研究产生不可预见的影响途径
  • 批准号:
    AH/X004473/1
  • 财政年份:
    2023
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了