InspiringFuture - Bioinspired nanoengineering of robust films: Multifunctional interfaces for enabling a sustainable future

InspiringFuture - 坚固薄膜的仿生纳米工程:实现可持续未来的多功能接口

基本信息

  • 批准号:
    EP/X023974/1
  • 负责人:
  • 金额:
    $ 219.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Scientific breakthroughs into surfaces/interfaces with high overall durability are critical to meet humanity's aspirations for sustainable development. With this context, I seek to undertake fundamental research to nanoengineer new bioinspired liquid-repellent films featuring resistance to sustained high-speed impact, fatigue and continuous flow (shear). My specific objectives are to:1) nanoengineer robust and flexible films with amphiphobicity (i.e. repellence to water and low surface tension liquid) built through thickness2) nanoengineer multi-layered amphiphobic film with mechanical anisotropy and energy dissipative mechanisms for impact/fatigue tolerance3) develop new insights into visco-elasto-plastic failure of the amphiphobic films using electron microscopy integrated nanomechanical tests and exploit them to engineer robust piezocatalytic films 4) perform first high-speed (~350 m/s) liquid/solid particle impact experiments on robust amphiphobic films, demonstrate their anti-icing, anti-scaling and optical transparency potential and to exploit robust piezocatalytic films to introduce continuous flow water remediation for pollution and disease control.The proposed protective nanoengineered films offer a substrate-independent solution for impact/erosion issues that plague transport systems, wind-turbines and offshore installations, and infrastructure exposed to harsh weather. These applications will also benefit from passive anti-icing/scaling potential of our films. With optical transparency, the films may prevent contamination of windows/windshields and handheld devices (e.g. phones/tablets). Furthermore, the piezocatalytic films may be retrofit to industrial/domestic pipes to enable continuous water remediation - this will reduce water waste and the antimicrobial resistance (AMR) burden, and potentially save millions of lives/year. Overall, the fellowship will contribute to sustainable development and meeting the European Green Deal targets.
具有高整体耐久性的表面/界面的科学突破对于满足人类可持续发展的愿望至关重要。在此背景下,我寻求进行基础研究,以纳米工程设计新型仿生防水薄膜,该薄膜具有耐持续高速冲击、疲劳和连续流动(剪切)的能力。我的具体目标是:1)通过厚度构建具有两亲性(即排斥水和低表面张力液体)的纳米工程坚固且灵活的薄膜2)具有机械各向异性和耐冲击/疲劳的能量耗散机制的纳米工程多层两亲薄膜3)开发关于粘弹塑性失效的新见解 使用电子显微镜集成纳米力学测试的双疏薄膜,并利用它们来设计坚固的压电催化薄膜 4) 在坚固的双疏薄膜上进行首次高速(~350 m/s)液体/固体颗粒冲击实验,展示其防冰、防垢和光学透明潜力,并利用坚固的压电催化薄膜引入连续流 所提出的保护性纳米工程薄膜为困扰运输系统、风力涡轮机和海上设施以及暴露在恶劣天气下的基础设施的冲击/侵蚀问题提供了一种独立于基材的解决方案。这些应用还将受益于我们薄膜的被动防冰/结垢潜力。由于具有光学透明度,薄膜可以防止窗户/挡风玻璃和手持设备(例如手机/平板电脑)受到污染。此外,压电催化薄膜可以对工业/家用管道进行改造,以实现连续的水修复——这将减少水的浪费和抗菌素耐药性(AMR)负担,并有可能每年挽救数百万人的生命。总体而言,该奖学金将为可持续发展和实现欧洲绿色协议目标做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manish K. Tiwari其他文献

Tyr320 is a molecular determinant of the catalytic activity of β-glucosidase from <em>Neosartorya fischeri</em>
  • DOI:
    10.1016/j.ijbiomac.2020.02.117
  • 发表时间:
    2020-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ramasamy Shanmugam;In-Won Kim;Manish K. Tiwari;Hui Gao;Primata Mardina;Devashish Das;Anurag Kumar;Marimuthu Jeya;Sang-Yong Kim;Young Sin Kim;Jung-Kul Lee
  • 通讯作者:
    Jung-Kul Lee
emIn situ/em characterisation of surface roughness and its amplification during multilayer single-track laser powder bed fusion additive manufacturing
多层单道激光粉末床熔融增材制造过程中表面粗糙度的原位/原位表征及其放大
  • DOI:
    10.1016/j.addma.2023.103809
  • 发表时间:
    2023-09-05
  • 期刊:
  • 影响因子:
    11.100
  • 作者:
    Alisha Bhatt;Yuze Huang;Chu Lun Alex Leung;Gowtham Soundarapandiyan;Sebastian Marussi;Saurabh Shah;Robert C. Atwood;Michael E. Fitzpatrick;Manish K. Tiwari;Peter D. Lee
  • 通讯作者:
    Peter D. Lee
Interventions used to reduce infectious aerosol concentrations in hospitals—a review
用于降低医院感染性气溶胶浓度的干预措施——综述
  • DOI:
    10.1016/j.eclinm.2024.102990
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Gráinne Brady;Fiona Bennin;Rosaline De Koning;Cecilia Vindrola-Padros;Sigrún Eyrúnardóttir Clark;Manish K. Tiwari;Simon Watt;Andrea Ducci;Ryo Torii;Danielle Morris;Elizabeth Lloyd-Dehler;Jerry Slann;Fiona Stevenson;Zarnie Khadjesari;Hakim-Moulay Dehbi;Lena Ciric;Ruth Epstein;John Rubin;Catherine F. Houlihan;Rachael Hunter;Laurence B. Lovat
  • 通讯作者:
    Laurence B. Lovat
Using mixed-fidelity to create effective environments
  • DOI:
    10.1007/s10111-025-00797-7
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Jeremy Opie;Shireen Jaufuraully;Carmen Salvadores Fernandez;Lakchana Mahendran;Adrien Desjardins;Dimitrios Siassakos;Anna L. David;Manish K. Tiwari;Ann Blandford
  • 通讯作者:
    Ann Blandford
Reticular photothermal traps enabling transparent coatings with exceptional all-day icephobicity
网状光热陷阱使透明涂层具有出色的全天防冰性能
  • DOI:
    10.1016/j.nantod.2025.102673
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Jianhui Zhang;Vikramjeet Singh;Prasenjit Kabi;Wei Huang;Simrandeep Bahal;Ioannis Papakonstantinou;Manish K. Tiwari
  • 通讯作者:
    Manish K. Tiwari

Manish K. Tiwari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manish K. Tiwari', 18)}}的其他基金

Nanomanufacturing of Surfaces for Energy Efficient Icing Suppression
用于节能结冰的表面纳米制造
  • 批准号:
    EP/N006577/1
  • 财政年份:
    2015
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant

相似海外基金

Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
  • 批准号:
    2323917
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
  • 批准号:
    DE240101045
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Discovery Early Career Researcher Award
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
  • 批准号:
    2344460
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
  • 批准号:
    2347477
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
Bioinspired photoreceptor and smart neural mimicking technologies
仿生感光器和智能神经模仿技术
  • 批准号:
    DP240100145
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Discovery Projects
Bioinspired Ceramifiable Fire-Retardant Composite Coatings
仿生陶瓷阻燃复合涂料
  • 批准号:
    DP240102628
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Discovery Projects
Bioinspired Membranes for Water Purification
用于水净化的仿生膜
  • 批准号:
    EP/Y001443/1
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant
Bioinspired Multiplexed Ultrasensitive Biosensing
仿生多重超灵敏生物传感
  • 批准号:
    EP/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Research Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231031
  • 财政年份:
    2023
  • 资助金额:
    $ 219.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了