Dispersive Phenomena in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程中的色散现象
基本信息
- 批准号:0301122
- 负责人:
- 金额:$ 47.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary aim of the proposed work is to investigate the role of dispersive phenomena in partial differential equations. While there certainly is some interest in studying dispersive phenomena for linear partial differential equations, the main motivation comes from nonlinear partial differential equations. Indeed, nonlinear effects (which can possibly lead to blowup) are stronger in regions of spatial concentration of the solutions. Hence the dispersion reduces the potential for blow-up. If nevertheless blow-up occurs, its pattern should largely be determined by the worst type of concentration allowed by the dispersion. On the other hand, nonlinear interactions can affect the dispersion. Thus one is led from the study of linear dispersion to bilinear estimates and further to the analysis of fully nonlinear interactions. In recent years this line of attack has proved to be highly successful in the study of nonlinear dispersive equations. Yet much more remains to bedone, and one has the feeling that we have only seen the tip of the iceberg. A simple way to describe dispersion is to say that waves (e.g. sound waves, elastic waves, water waves, electromagnetic waves, etc) cannot stay spatially concentrated for a long period of time; instead they must spread out and decay. In linear problems different waves cross each other without interaction. However, in nonlinear phenomena waves will always interact. The strength of this interaction depends on the strength of each wave but also on their intersection pattern. These nonlinear interactions play an essential role in both the study of the short time behavior and of the long time behavior of various physical systems. Examples include elastic waves in solids, gravitational waves in general relativity, and many others. The goal of the proposed work is to contribute to the understanding of the dynamics of nonlinear wave interactions in the context of physically motivated dispersive systems.
所提出的工作的主要目的是调查色散现象在偏微分方程中的作用。虽然人们对研究线性偏微分方程的色散现象有一定的兴趣,但主要的动机来自非线性偏微分方程。事实上,非线性效应(这可能会导致爆破)的解决方案的空间浓度的区域更强。因此,分散降低了爆破的可能性。 然而,如果爆发发生,其模式应在很大程度上取决于分散所允许的最差集中类型。 另一方面,非线性相互作用可以影响色散。 因此,人们从线性色散的研究,双线性估计,并进一步分析完全非线性相互作用。近年来,这条线的攻击已被证明是非常成功的研究非线性色散方程。然而,还有更多的工作要做,人们有一种感觉,我们只是看到了冰山一角。描述色散的一种简单方法是说波(例如声波,弹性波,水波,电磁波等)不能在空间上集中很长一段时间;相反,它们必须扩散和衰减。在线性问题中,不同的波相互交叉而没有相互作用。然而,在非线性现象中,波总是相互作用的。这种相互作用的强度取决于每个波的强度,也取决于它们的交叉模式。这些非线性相互作用在各种物理系统的短时行为和长时行为的研究中都起着重要的作用。例子包括固体中的弹性波,广义相对论中的引力波,以及许多其他的。所提出的工作的目标是有助于理解的动力学的非线性波相互作用的背景下,物理激励的色散系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Tataru其他文献
Local Well-Posedness of Skew Mean Curvature Flow for Small Data in $$d\ge 4$$ Dimensions
- DOI:
10.1007/s00220-021-04303-8 - 发表时间:
2022-01-15 - 期刊:
- 影响因子:2.600
- 作者:
Jiaxi Huang;Daniel Tataru - 通讯作者:
Daniel Tataru
Daniel Tataru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Tataru', 18)}}的其他基金
Singularities and Long Time Dynamics in Nonlinear Dispersive Flows
非线性色散流中的奇点和长时间动力学
- 批准号:
1800294 - 财政年份:2018
- 资助金额:
$ 47.85万 - 项目类别:
Continuing Grant
Local and global dynamics for nonlinear dispersive equations
非线性色散方程的局部和全局动力学
- 批准号:
0801261 - 财政年份:2008
- 资助金额:
$ 47.85万 - 项目类别:
Continuing Grant
FRG Collaborative Proposal: Eigenfunctions of the Laplacian
FRG 合作提案:拉普拉斯算子的本征函数
- 批准号:
0354539 - 财政年份:2004
- 资助金额:
$ 47.85万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research: Regularity and Uniqueness Questions for Partial Differential Equations
美德合作研究:偏微分方程的正则性与唯一性问题
- 批准号:
9815286 - 财政年份:1999
- 资助金额:
$ 47.85万 - 项目类别:
Standard Grant
Linear and Semilinear Partial Differential Equations
线性和半线性偏微分方程
- 批准号:
9622942 - 财政年份:1996
- 资助金额:
$ 47.85万 - 项目类别:
Standard Grant
相似海外基金
Learning High-Dimensional Non-Linear Maps Arising from Physical Phenomena via Symmetry and Structure-Preserving Deep Neural Networks
通过对称性和结构保持深度神经网络学习物理现象产生的高维非线性图
- 批准号:
2012292 - 财政年份:2020
- 资助金额:
$ 47.85万 - 项目类别:
Standard Grant
Non-linear Phenomena in Hybrid Quantum Systems
混合量子系统中的非线性现象
- 批准号:
19H00662 - 财政年份:2019
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of low heat input LFW (Linear Friction Welding) system and clarification of LFW phenomena for dissimilar joint making
开发低热输入 LFW(线性摩擦焊接)系统并澄清异种材料接头制造的 LFW 现象
- 批准号:
16K06748 - 财政年份:2016
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of spin order and non-linear phenomena induced by intense terahertz magnetic field
强太赫兹磁场引起的自旋序和非线性现象的控制
- 批准号:
26287060 - 财政年份:2014
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of AdS/CFT duality on the non linear phenomena
AdS/CFT对偶性在非线性现象中的应用
- 批准号:
26400280 - 财政年份:2014
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric studies on singularity of non-linear phenomena
非线性现象奇点的几何研究
- 批准号:
26287009 - 财政年份:2014
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
WAVES 2011: International Conference on Linear and Nonlinear Wave Phenomena
WAVES 2011:线性和非线性波现象国际会议
- 批准号:
1108902 - 财政年份:2011
- 资助金额:
$ 47.85万 - 项目类别:
Standard Grant
Quantum field theory and non-linear phenomena
量子场论和非线性现象
- 批准号:
121210-2008 - 财政年份:2010
- 资助金额:
$ 47.85万 - 项目类别:
Subatomic Physics Envelope - Individual
A research on the geometric singularities of non-linear phenomena
非线性现象的几何奇点研究
- 批准号:
22340011 - 财政年份:2010
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of the solution structure of non-linear partial differential equations corresponding to the wave phenomena and plasma phenomena
波动现象和等离子体现象对应的非线性偏微分方程的解结构分析
- 批准号:
21540186 - 财政年份:2009
- 资助金额:
$ 47.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




