Problems in Hyperbolic Field Theories
双曲场论中的问题
基本信息
- 批准号:0301207
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Abdolreza Tahvildar-Zadeh, Rutgers UniversityDMS-0301207--------------------------------------Problems in Hyperbolic Field TheoriesThis is a three-year proposal for studying some of the hyperbolic systems of partial differential equations arising in physical theories that are derivable from a Lagrangian, focusing on questions of long-time existence and asymptotic behavior of classical solutions, mapping properties of the linear operators involved, and nonlinear dynamical stability of static and stationary solutions. Specific problems proposed are (1) Obtaining space-time Strichartz estimates for solutions of the linear wave and Schroedinger equations in presence of potentials with critical (i.e. inverse-square) decay at infinity and/or with local singularities. (2) Proving stability of vortex-like wave maps from the Minkowski space into the sphere, utilizing the above estimates. (3) Obtaining a sharp dispersive estimate for solutions of the anisotropic Maxwell equations of crystal optics, one that encodes the direction-dependence of the decay. (4) Proving global existence of small-amplitude waves for the Euler-Maxwell system describing the dynamics of plasma modeled by an electron fluid moving in a constant ion background. (5) Using the wave map formulation of symmetry-reduced Einstein equations of general relativity to obtain results on the future and past asymptotic behaviors of Gowdy metrics, on the existence of constant mean curvature hypersurfaces in symmetric spacetimes with twist, on the oscillatory approach to the initial singularity in these spacetimes, and on the global existence for the Einstein-Vlasov system in cylindrical symmetry.Field Theory is the most enduring paradigm of classical as well as modern physics. Electromagnetics, fluid and solid mechanics, weak and strong interactions of elementary particles, and Einstein's theory of gravitation are all describable in the framework of a field theory. One of the most important physical phenomena to be understood in this framework is the phenomenon of waves, their creation, propagation, interaction, and dispersion. Some examples are electromagnetic waves, material waves, and gravitational waves. Each of the problems proposed here has a direct consequence in the understanding of a specific aspect of the wave phenomenon. With the dawn of a new century, as advances in technology force scientists to address the inherently nonlinear behavior of nature in more detail than ever before, mathematical analysts are in a position to take up the challenge of doing research in those areas of physical mathematics that have long been neglected by others. This fundamental research involves going beyond numerical simulations and approximate equations, and addressing the hard problems that lie at the core of the subject, i.e. in the theory of nonlinear partial differential equations. Understanding nonlinear waves is an important step in this direction. This is very much a collaborative effort, and in particular collaborations with members of mathematical communities in other parts of the world where a tradition of caring about physical problems is well-maintained, provides us with an opportunity to play a role in preventing the erosion of the leading status of the US in these key areas of mathematical sciences.
主要研究者:Abdolreza Tahvildar-Zadeh,Rutgers大学DMS-0301207--重点是古典解的长期存在性和渐近行为,所涉及的线性算子的映射性质,以及静态和稳态解的非线性动力学稳定性。 提出的具体问题是:(1)在无穷远处临界(即平方反比)衰减势和/或局部奇性势存在的情况下,获得线性波方程和薛定谔方程解的时空Eschhartz估计。 (2)利用上述估计证明了从闵可夫斯基空间到球面的涡旋波映射的稳定性。(3)获得晶体光学的各向异性麦克斯韦方程的解的精确色散估计,该估计对衰减的方向依赖性进行编码。 (4)证明了描述等离子体动力学的Euler-Maxwell系统整体存在小振幅波,该系统由在恒定离子背景中运动的电子流体模拟。 (5)利用广义相对论的Einstein约化方程的波映射公式,得到了Gowdy度量的未来和过去渐近行为,扭曲对称时空中常平均曲率超曲面的存在性,这些时空中初始奇异性的振荡方法,场论是经典物理学和现代物理学中最持久的范式。 电磁学、流体和固体力学、基本粒子的弱相互作用和强相互作用以及爱因斯坦的引力理论都可以在场论的框架中描述。 在这个框架中要理解的最重要的物理现象之一是波的现象,它们的产生,传播,相互作用和分散。 一些例子是电磁波、物质波和引力波。 这里提出的每一个问题都对理解波现象的一个特定方面有直接的影响。 随着新的世纪的到来,随着技术的进步迫使科学家们比以往任何时候都更详细地解决自然界固有的非线性行为,数学分析家们能够接受在那些长期被其他人忽视的物理数学领域进行研究的挑战。 这一基础研究涉及超越数值模拟和近似方程,并解决该主题核心的难题,即非线性偏微分方程理论。 理解非线性波是朝着这个方向迈出的重要一步。这在很大程度上是一项合作努力,特别是与世界其他地区的数学社区成员的合作,这些地区一直保持着关心物理问题的传统,为我们提供了一个机会,可以在防止美国在数学科学这些关键领域的领先地位受到侵蚀方面发挥作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abdolreza Tahvildar-Zadeh其他文献
Abdolreza Tahvildar-Zadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abdolreza Tahvildar-Zadeh', 18)}}的其他基金
Problems in Nonlinear Geometric Field Theories
非线性几何场论中的问题
- 批准号:
9704430 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: "The Wave Map Program: Toward a Theory of Regularity and Break-down in Classical Nonlinear Fields"
数学科学:“波图程序:走向经典非线性场中的规律性和分解理论”
- 批准号:
9504919 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
- 批准号:
2400090 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
- 批准号:
2350423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
RUI: Nonuniformly Hyperbolic and Extended Dynamical Systems
RUI:非均匀双曲和扩展动力系统
- 批准号:
2350079 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
- 批准号:
2309084 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
RUI: Pure and Applied Knot Theory: Skeins, Hyperbolic Volumes, and Biopolymers
RUI:纯结理论和应用结理论:绞纱、双曲体积和生物聚合物
- 批准号:
2305414 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
C*-algebras Associated to Minimal and Hyperbolic Dynamical Systems
与最小和双曲动力系统相关的 C* 代数
- 批准号:
2247424 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




