Arithmetic study of Shimura varieties
志村品种的算术研究
基本信息
- 批准号:13440004
- 负责人:
- 金额:$ 9.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator has been studying a non-abelian class field theory (Langlands program) via arithmetic geometry of Shimura varieties. Here is a brief summary of the research during the period.1.By applying the non-abelian class field theory to algebraic number theory, we have got a new insight on Leopoldt conjecture in algebraic number theory. Especially, a connection between A.Wiles' work on Taniyama-Shimura conjecture for elliptic curves and W.Thurston's three dimensional hyperbolic geometry was found. This connection is closely related to an analogy between knots and primes dur to B.Mazer and M.Morishita, showing the variety of the related research areas. This is reported at international conferences hold at Paris 13(2002), Nagoya(2003). The abstract is published, and more detailed article is under preparation.2.During the research period, p-adic description of Shimura varieties has been developed worldwide. Motivated by this, the author is trying to establish a new foundation of rigid geometry with F.Kato(Kyoto). This work generalizes the framework of rigid geometry, giving more solid foundation for the application. The detail is under preparation, and will be published as a book in near future.3.The head investigator stayed one month and half at University Paris 7 from May 2002,and also University Paris 13 in September 2002. There were many research activities including discussions with M.F.Vigneras(Paris 7), J.P.Labesse(Paris 7), M.Harris, (Paris 7), A.M.Aubert(Ecole Normal)J.Tilouine(Paris 13), especially on automorphic forms and representation theory of p-adic groups. Our group is also making collaboration with P.Colmez(Paris 6) and J.Nekovar(Paris 7) from more number theoretical viewpoint using p-adic methods. For these collaborations, the grant is used effectively.
首席研究员一直在研究非阿贝尔类场理论(朗兰兹计划)通过算术几何志村品种。将非交换类域理论应用到代数数论中,对代数数论中的Leopoldt猜想有了新的认识。特别是发现了A.Wiles关于椭圆曲线的Taniyama-Shimura猜想的工作与W.Thurston的三维双曲几何之间的联系,这种联系与B.Mazer和M.Morishita关于纽结和素数的类比密切相关,显示了相关研究领域的多样性。在巴黎13(2002年)和名古屋(2003年)举行的国际会议上报告了这一点。摘要已发表,更详细的文章正在整理中。2.在研究期间,志村品种的p-adic描述在世界范围内得到了发展。受此启发,作者正试图与F.加藤(京都)一起建立刚性几何的新基础。这项工作概括了刚性几何的框架,为应用提供了更坚实的基础。详细信息正在准备中,并将在不久的将来出版成书。3.首席研究员从2002年5月起在巴黎第七大学停留了一个半月,并于2002年9月在巴黎第十三大学停留了一个半月。有许多研究活动,包括讨论与MF Vigneras(巴黎7),JP Labesse(巴黎7),M.哈里斯,(巴黎7),AM Aubert(高等师范)J.Tilouine(巴黎13),特别是自守形式和代表性理论的p进群。我们小组还与P.Colmez(巴黎6)和J.Nekovar(巴黎7)合作,从更多的数论观点使用p-adic方法。在这些合作中,赠款得到了有效利用。
项目成果
期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kazuhiro Fujiwara: "A proof the absolute purity conjecture (after Gabber)"Algebraic Geometry 2000, Azumino, Advanced Studies in Pure Math.. 36. 153-183 (2002)
Kazuhiro Fujiwara:“绝对纯度猜想的证明(Gabber 之后)”代数几何 2000,Azumino,纯数学高级研究.. 36. 153-183 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Log smooth extension of a family of curves and semi-stable reduction
- DOI:10.1090/s1056-3911-03-00338-2
- 发表时间:2004-05
- 期刊:
- 影响因子:1.8
- 作者:Takeshi Saito
- 通讯作者:Takeshi Saito
Independence of 1 for intersection cohomology(after Gabber)
交上同调的 1 的独立性(继 Gabber)
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Fujiwara;Kazuhiro
- 通讯作者:Kazuhiro
Tohru Uzawa: "Symmetric varieties over arbitrary fields"C.R.Acad. Sci. Paris. 333. 1-6 (2001)
Tohru Uzawa:“任意领域的对称品种”C.R.Acad。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIWARA Kazuhiro其他文献
FUJIWARA Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIWARA Kazuhiro', 18)}}的其他基金
Elucidating the effects of fluctuations in sunlight spectral distribution on leaf photosynthesis through laboratory experiments
通过实验室实验阐明阳光光谱分布波动对叶片光合作用的影响
- 批准号:
18H03966 - 财政年份:2018
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Non-Destructive Measurement of Target Protein Content in Leaves for Plant-Made Pharmaceutical Protein Production
用于植物药用蛋白生产的叶子中目标蛋白含量的无损测量
- 批准号:
24658217 - 财政年份:2012
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Non-commutative class field theory and Shimura varieties
非交换类场论和 Shimura 簇
- 批准号:
21340004 - 财政年份:2009
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Design and development of an LED-artificial sunlight source system capable of controlling spectral power distribution
一种可控制光谱功率分布的LED人工太阳光源系统的设计与开发
- 批准号:
18380147 - 财政年份:2006
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an optimal light environment control system for low light irradiation-low temperature storage of transplants
移植物弱光照射-低温保存最佳光环境控制系统的研制
- 批准号:
15380169 - 财政年份:2003
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of water treatment methods and crop management methods for suppressing crop photoinhibition
开发抑制作物光抑制的水处理方法和作物管理方法
- 批准号:
11556046 - 财政年份:1999
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Iwasawa theory for cyclotomic towers
岩泽圆塔理论
- 批准号:
10640018 - 财政年份:1998
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automorphic and Galois representations
自守和伽罗瓦表示
- 批准号:
08640023 - 财政年份:1996
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Arithmetic geometry of Shimura varieties and non-abelian class field theory
志村簇的算术几何与非阿贝尔类域论
- 批准号:
26800013 - 财政年份:2014
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




