Irreducible Representations of the Affine and Double Affine Hecke Algebras of Type A

A型仿射和双仿射Hecke代数的不可约表示

基本信息

  • 批准号:
    0301320
  • 负责人:
  • 金额:
    $ 9.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-01 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Irreducible representations of the affine and double affine Hecke algebras of type AThe aim of this project is to parameterize, construct, and describe the irreducible modules of the affine and double affine Hecke algebras. The investigator intends to extract combinatorial structure from the non-semisimple representations of these algebras, a key example of which is the crystal graph structure on the irreducible representations of the affine Hecke algebra of type A. The representation theory of Hecke algebras has applications in many areas of mathematics. Hecke algebras appear naturally in the representation theory of semisimple p-adic groups and are also a tool in the study of the modular representation theory of reductive groups over finite fields. They have intimate connections to quantum groups, statistical mechanics, and knot theory. Double affine Hecke algebras were defined by Cherednik and used by him to prove certain conjectures of Macdonald. They have connections to harmonic analysis of symmetric spaces and the classical theories of hypergeometric functions and q-hypergeometric functions.This is a project in representation theory, which is the study of symmetry. Representation theory gives us the tools to solve problems about any system that exhibits symmetry, and so has wide applications in chemistry, physics, computer science, and even within other areas of mathematics. The investigator will study the most basic objects whose symmetries are encoded in a structure called the Hecke algebra. One of her primary methods is to "glue" these basic objects together in such a way that their global controlling structure is apparent---much in the same way that organizing the elements into the periodic table gives us information about the shared chemical properties of halogens (or other groups).
A型仿射和双仿射Hecke代数的不可约表示本项目的目的是对仿射和双仿射Hecke代数的不可约模进行参数化、构造和描述。研究人员打算从这些代数的非半单表示中提取组合结构,其中一个关键的例子是A型仿射Hecke代数不可约表示上的晶图结构。Hecke代数的表示理论在数学的许多领域都有应用。Hecke代数自然而然地出现在半单p-add群的表示理论中,也是研究有限域上约化群的模表示理论的一个工具。它们与量子群、统计力学和纽结理论有着密切的联系。双仿射Hecke代数是由Cherednik定义的,并被他用来证明Macdonald的某些猜想。它们与对称空间的调和分析以及经典的超几何函数和q-超几何函数理论有联系。这是表示论中的一个项目,它是对对称性的研究。表象理论给我们提供了解决任何对称系统的问题的工具,因此在化学、物理、计算机科学,甚至在数学的其他领域都有广泛的应用。研究人员将研究最基本的物体,这些物体的对称性被编码在一种称为黑克代数的结构中。她的主要方法之一是将这些基本物体以一种明显的全局控制结构的方式粘合在一起-就像将元素组织到元素周期表中给我们提供关于卤素(或其他基团)的共同化学性质的信息一样。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Vazirani其他文献

Vanishing Integrals of Macdonald and Koornwinder polynomials
  • DOI:
    10.1007/s00031-007-0058-3
  • 发表时间:
    2007-11-28
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Eric M. Rains;Monica Vazirani
  • 通讯作者:
    Monica Vazirani
Counting Shi Regions with a Fixed Separating Wall
  • DOI:
    10.1007/s00026-013-0201-x
  • 发表时间:
    2013-08-22
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Susanna Fishel;Eleni Tzanaki;Monica Vazirani
  • 通讯作者:
    Monica Vazirani
Parameterizing Hecke Algebra Modules: Bernstein-Zelevinsky Multisegments, Kleshchev Multipartitions, and Crystal Graphs
  • DOI:
    10.1007/s00031-002-0014-1
  • 发表时间:
    2001-07
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Monica Vazirani
  • 通讯作者:
    Monica Vazirani
10 Years of BADMath
  • DOI:
    10.1007/s00026-012-0167-0
  • 发表时间:
    2012-11-24
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Matthias Beck;Andrew Berget;Raman Sanyal;Monica Vazirani;Ellen Veomett
  • 通讯作者:
    Ellen Veomett

Monica Vazirani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Vazirani', 18)}}的其他基金

Conference: Algebraic Combinatorixx
会议:代数组合器ixx
  • 批准号:
    1101740
  • 财政年份:
    2011
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Graduate Student Combinatorics Conference
研究生组合学会议
  • 批准号:
    0752864
  • 财政年份:
    2008
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
MSPRF: Irreducible representations of affine and cyclotomic Hecke algebras of type A: a parameterization and a branching rule
MSPRF:A 型仿射和分圆 Hecke 代数的不可约表示:参数化和分支规则
  • 批准号:
    9971086
  • 财政年份:
    1999
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Fellowship Award

相似海外基金

Study on the representations of affine quantum groups using quivers with potentials
用势颤振表示仿射量子群的研究
  • 批准号:
    23K12955
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
  • 批准号:
    21F20788
  • 财政年份:
    2021
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2019
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2018
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2017
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2016
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Affine Flags, p-adic Representations, and Quantum Cohomology
RUI:仿射旗、p-adic 表示和量子上同调
  • 批准号:
    1600982
  • 财政年份:
    2016
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Research on the classical limits of finite-dimensional representations over a quantum affine algebra
量子仿射代数有限维表示的经典极限研究
  • 批准号:
    16K17563
  • 财政年份:
    2016
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Relation between representations at the critical level and those of level zero for affine Lie algebras and semi-infinite flag manifolds
仿射李代数和半无限标志流形的临界层表示与零层表示之间的关系
  • 批准号:
    16H03920
  • 财政年份:
    2016
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2015
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了