Multi-affine Lie algebras and their representations

多重仿射李代数及其表示

基本信息

  • 批准号:
    RGPIN-2015-05967
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Extended affine Lie algebras are a natural generalization of the affine Kac-Moody Lie algebras. They were introduced by mathematical physicists in understanding the high dimensional string theory and conformal field theory. This class of Lie algebras is closely related to the extended affine root systems of Saito, the generalized intersection matrix  Lie algebras of Slodowy, and the root graded Lie algebras studied by Berman-Moody, Benkart-Zelmanov, Neher, among others. Every extended affine Lie algebra is associated with a finite irreducible root system (possibly non-reduced) and a nonnegative integer called nullity. The nullity zero yields exactly finite dimensional simple Lie algebras while the nullity one yields exactly affine Kac-Moody Lie algebras. The nullity greater than one yields multi-affine Lie algebras which include many interesting examples such as toroidal Lie algebras, and certain Lie algebras coordinated with quantum tori and even non-associative tori. The structure theory of the extended affine Lie algebras has been well understood. However, the representation theory of the extended affine Lie algebras is hard and far from complete. In this proposal, we will continue to study the extended affine Lie algebras, their representations and quantizations. We intend to explore some related algebras such as multi-affine Lie super-algebras as well as certain GIM Lie algebras. The following three topics are our interests for a short or longer term.
广义仿射李代数是仿射Kac-Moody李代数的自然推广。它们是数学物理学家在理解高维弦理论和共形场论时引入的。这类李代数与Saito的扩展仿射根系、Slodowy的广义交矩阵李代数以及Berman-Moody、Benkart-Zelmanov、Neher等人研究的根分次李代数密切相关。每个扩展仿射李代数都与一个有限的不可约根系(可能是非约的)和一个称为零度的非负整数相关联。零度产生精确有限维单李代数,而零度产生精确仿射Kac-Moody李代数。零度大于1产生多仿射李代数,其中包括许多有趣的例子,如环面李代数,以及某些与量子环面甚至非结合环面协调的李代数。 扩张仿射李代数的结构理论已经得到了很好的理解。 然而,扩张仿射李代数的表示理论是困难的,远未完成。在这个计划中,我们将继续研究扩展仿射李代数,它们的表示和量子化。我们打算探索一些相关的代数,如多仿射李超代数以及某些GIM李代数。以下三个主题是我们短期或长期的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gao, Yun其他文献

div class=page div class=layoutArea div class=column br / On the Griffiths numbers for higher dimensional singularitiesbr / br / /div /div /di
关于高维奇点的格里菲斯数
Advance of Mesenchymal Stem Cells in Chronic End-Stage Liver Disease Control.
  • DOI:
    10.1155/2022/1526217
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Gao, Yun;Yin, Xiushan;Ren, Xiaomeng
  • 通讯作者:
    Ren, Xiaomeng
Genome-wide identification of functional enhancers and their potential roles in pig breeding.
  • DOI:
    10.1186/s40104-022-00726-y
  • 发表时间:
    2022-07-04
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Wu, Yinqiao;Zhang, Yuedong;Liu, Hang;Gao, Yun;Liu, Yuyan;Chen, Ling;Liu, Lu;Irwin, David M.;Hou, Chunhui;Zhou, Zhongyin;Zhang, Yaping
  • 通讯作者:
    Zhang, Yaping
Up-regulation of GPR48 induced by down-regulation of p27Kip1 enhances carcinoma cell invasiveness and metastasis
  • DOI:
    10.1158/0008-5472.can-06-2629
  • 发表时间:
    2006-12-15
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Gao, Yun;Kitagawa, Kyoko;Kitagawa, Masatoshi
  • 通讯作者:
    Kitagawa, Masatoshi
Explicit construction of moduli space of bounded complete Reinhardt domains in C-n
C-n 中有界完全 Reinhardt 域模空间的显式构造

Gao, Yun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gao, Yun', 18)}}的其他基金

Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
  • 批准号:
    227312-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
  • 批准号:
    227312-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
  • 批准号:
    227312-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
  • 批准号:
    227312-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Representations for extended affine Lie algebras and their quantum groups
扩展仿射李代数及其量子群的表示
  • 批准号:
    227312-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Extended affine lie algebras and quantizations
扩展仿射李代数和量化
  • 批准号:
    227312-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

随机多重分形的时维谱分布理论及Affine类时频处理技术
  • 批准号:
    60702016
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
无限维李代数的表示及相关课题
  • 批准号:
    10571119
  • 批准年份:
    2005
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
  • 批准号:
    23K03063
  • 财政年份:
    2023
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
  • 批准号:
    567867-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Postdoctoral Fellowships
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2017
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Cherednik Algebras and Affine Lie Algebras
Cherednik 代数和仿射李代数
  • 批准号:
    EP/N023919/1
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Tilings from twisted affine Lie algebras
扭曲仿射李代数的平铺
  • 批准号:
    497351-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    University Undergraduate Student Research Awards
Relation between representations at the critical level and those of level zero for affine Lie algebras and semi-infinite flag manifolds
仿射李代数和半无限标志流形的临界层表示与零层表示之间的关系
  • 批准号:
    16H03920
  • 财政年份:
    2016
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-affine Lie algebras and their representations
多重仿射李代数及其表示
  • 批准号:
    RGPIN-2015-05967
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
Extended affine Lie algebras, groups and representation theory
扩展仿射李代数、群和表示论
  • 批准号:
    8836-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了