Uniqueness and Stability for an Ideal Fluid

理想流体的独特性和稳定性

基本信息

  • 批准号:
    0301531
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

This project addresses mathematical problems related to the motion of an ideal fluid. The question of uniqueness will be studied for the system of equations describing fluid motion with special emphasis on "rough" flows. In this situation, the trajectories of fluid particles may not be uniquely defined at some points. The vanishing viscosity limit is deeply connected with uniqueness and will be investigated for such classes of flows. Qualitative properties of a possible blow-up set will also be considered. Another line of research focuses on the linear stability of an ideal fluid. The main question to be addressed in this area is how the growth rate of a small perturbation is related to the location of the spectrum of small oscillations. The interrelation between linear instability and nonlinear instability for flows of an ideal incompressible fluid will be studied.Mathematical study of the basic models describing fluid motion forms a foundation for a number of applications, such as meteorology, geophysics, astrophysics, engineering, and the theory of turbulence. This research explores one of the two commonly used models describing the motion of fluids, and investigates whether the initial distribution of velocity in a fluid flow determines the future velocity distribution. Stability of general classes of fluid flows will be studied, and in particular, the question of whether stability can be determined by characteristics of small oscillations. Potential applications of this research include modeling of large and small scale structures in turbulence, as well as stability of vortices in the atmosphere and ocean.
这个项目解决了与理想流体运动有关的数学问题。我们将研究描述流体运动的方程组的唯一性问题,特别强调“粗糙”流动。在这种情况下,流体粒子的轨迹在某些点上可能不是唯一定义的。消失粘度极限与唯一性密切相关,将对这类流动进行研究。还将考虑可能爆破集的定性性质。另一个研究方向是关注理想流体的线性稳定性。在这个领域中要解决的主要问题是小扰动的增长率如何与小振荡的频谱位置有关。研究了理想不可压缩流体流动的线性不稳定性和非线性不稳定性之间的相互关系。描述流体运动的基本模型的数学研究形成了许多应用的基础,如气象学、地球物理学、天体物理学、工程学和湍流理论。本研究探讨了描述流体运动的两种常用模型之一,并探讨了流体流动中速度的初始分布是否决定了未来的速度分布。一般流体流动的稳定性将被研究,特别是稳定性是否可以由小振荡的特征决定的问题。本研究的潜在应用包括湍流中大尺度和小尺度结构的建模,以及大气和海洋中漩涡的稳定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Vishik其他文献

Mikhail Vishik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Vishik', 18)}}的其他基金

Weak Singularities and Transport for Incompressible Flows of an Ideal Fluid
理想流体不可压缩流动的弱奇异性和输运
  • 批准号:
    9876947
  • 财政年份:
    1999
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity and Oscillations in Mathematical Theory of an Ideal Incompressible Fluid
数学科学:理想不可压缩流体数学理论中的规律性和振荡
  • 批准号:
    9531769
  • 财政年份:
    1996
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hydrodynamic Stability and Dynamo Theory
数学科学:水动力稳定性和发电机理论
  • 批准号:
    9301172
  • 财政年份:
    1993
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamo Theory Methods for Vorticity Generation in Viscous Fluids
数学科学:粘性流体中涡度产生的发电机理论方法
  • 批准号:
    9105688
  • 财政年份:
    1991
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
  • 批准号:
    23K22120
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
  • 批准号:
    23K25777
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
  • 批准号:
    2330970
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
  • 批准号:
    2338345
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
  • 批准号:
    NE/Y001249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了