Weak Singularities and Transport for Incompressible Flows of an Ideal Fluid

理想流体不可压缩流动的弱奇异性和输运

基本信息

  • 批准号:
    9876947
  • 负责人:
  • 金额:
    $ 8.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

9876947VishikThe principal investigator will study the mathematical problems of fluid motion. Methods of Littlewood-Paley theory and wavelets will be used to study weak singularities for the incompressible flows of an ideal fluid. The basic nonstationary problem for the Euler equations will be investigated in function classes with, generally, essentially unbounded vorticity. He will address the problem of linear vector transport by flows that are less than regular. These aspects of transport theory are directly applicable to questions of existence and uniqueness for the Euler equations.The mathematical theory of fluid motion is fundamental both for applications in meteorology, geophysics, astrophysics and within mathematics itself. Most of the flows in nature such as ocean currents, or hurricanes, or the motion of matter in a galaxy, are highly irregular. The origin and evolution of singular structures such as rapid oscillations of a flow are still not well understood. In addition to this, numerical modelling of irregular flows is limited by instabilities due to the small scale structures constantly produced by the flow. The PI will investigate two related aspects of this subject. First, the basic mathematical nature of the flows with singularities. Second, transport of quantities such as the magnetic field by irregular flows in the solar photosphere.
[9876947]首席研究员将研究流体运动的数学问题。本文将利用Littlewood-Paley理论和小波的方法研究理想流体不可压缩流动的弱奇异性。欧拉方程的基本非平稳问题将在通常具有无界涡量的函数类中进行研究。他将讨论非规则流的线性矢量传输问题。输运理论的这些方面直接适用于欧拉方程的存在性和唯一性问题。流体运动的数学理论是气象学、地球物理学、天体物理学和数学本身应用的基础。自然界中的大多数流动,如洋流、飓风或星系中的物质运动,都是高度不规则的。奇异结构的起源和演化,如水流的快速振荡,仍然没有得到很好的理解。除此之外,由于流动不断产生的小尺度结构的不稳定性,限制了不规则流动的数值模拟。PI将调查这一主题的两个相关方面。首先,奇点流的基本数学性质。第二,由太阳光球中不规则流引起的量的传输,例如磁场。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Vishik其他文献

Mikhail Vishik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Vishik', 18)}}的其他基金

Uniqueness and Stability for an Ideal Fluid
理想流体的独特性和稳定性
  • 批准号:
    0301531
  • 财政年份:
    2003
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity and Oscillations in Mathematical Theory of an Ideal Incompressible Fluid
数学科学:理想不可压缩流体数学理论中的规律性和振荡
  • 批准号:
    9531769
  • 财政年份:
    1996
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hydrodynamic Stability and Dynamo Theory
数学科学:水动力稳定性和发电机理论
  • 批准号:
    9301172
  • 财政年份:
    1993
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dynamo Theory Methods for Vorticity Generation in Viscous Fluids
数学科学:粘性流体中涡度产生的发电机理论方法
  • 批准号:
    9105688
  • 财政年份:
    1991
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
  • 批准号:
    2422557
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Discovery Projects
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
  • 批准号:
    2401041
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Studentship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
  • 批准号:
    2301463
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
A study of hypersurface singularities
超曲面奇点的研究
  • 批准号:
    2302685
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Standard Grant
Interaction of singularities and number theory
奇点与数论的相互作用
  • 批准号:
    23H01070
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.91万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了