Simulation and Function Approximation Based Iterative Approach To Process Control

基于仿真和函数逼近的过程控制迭代方法

基本信息

  • 批准号:
    0301993
  • 负责人:
  • 金额:
    $ 21.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-04-15 至 2007-03-31
  • 项目状态:
    已结题

项目摘要

Research:The PI plans to investigate a simulation and function approximation-based strategy for bringing an evolutionary improvement to a control policy. The investigation is motivated by some inherent limitations of the current model-based predictive control formulation with respect to handling systems of large-scale complex dynamics, and large amount of uncertainty. The development will be rooted in an approach developed in the field of artificial intelligence - referred to by various names such as Neuro-Dynamic Programming and Reinforced Learning - which has shown great success in handling highly complex multi-stage discrete decision problems like backgammon playing, elevator dispatch problem, and job-shop scheduling. The approach, when extrapolated to the problem of process control, begins by performing closed-loop simulations with a given suboptimal control policy for an extensive set of possible operating conditions. The simulation results are then used to generate data for state versus "cost-to-go" or "reward" function, typically by fitting a neural network to the data. The approximation is improved by additional off-line calculations, either by "value iteration" based on iterating the Bellman Equation or by "policy iteration" based on iterating between policy evaluation and policy improvement. The improved approximation of the "cost-to-go" function can be used to implement optimal control in a computationally efficient way, either by reducing a large-horizon problem into an equivalent short-horizon problem or by allowing an off-line parameterization of the improved control law. To make the approach practicable for process control a number of issues need to be resolved. The success of the approach will depend on the ability to obtain an accurate and robust approximation of the cost-to-go function. An immediate question to ask is what types of function approximators are best suited for the approximation. Also, the level of confidence in the neural network's cost predictions through interpolation and extrapolation need to be taken into account in the control calculations. The PI plans to investigate these and other fundamental issues to arrive at systematic and practically useful answers. The PI will collaborate with industrial partners Weyerhauser, Owens Corning, LG Chemicals, and Aspen Technology, to test the developed tools on real industrial process and to incorporate them into commercial process control software packages. The application portion of the project will be carried out by students and visitors supported by these companies.Broader Impact:The Chemical Process Industries (CPI) are replete with nonlinear control problems involving significant uncertainties, which can benefit from this work. In addition to process control, the strategy fits naturally to planning and scheduling problems under uncertainty as well as supply chain operation problems.
研究:PI计划研究一种基于模拟和函数近似的策略,用于对控制策略进行进化改进。 调查的动机是一些固有的局限性,目前基于模型的预测控制制定处理系统的大规模复杂的动态,大量的不确定性。 开发将植根于人工智能领域开发的方法-被称为各种名称,如神经动态规划和强化学习-在处理高度复杂的多阶段离散决策问题方面取得了巨大成功,如西洋双陆棋,电梯调度问题和车间调度。 该方法,当外推到过程控制的问题,开始进行闭环模拟与一个给定的次优控制策略的一组广泛的可能的操作条件。 然后,模拟结果用于生成状态与“成本”或“奖励”函数的数据,通常通过将神经网络拟合到数据。 通过额外的离线计算,或者通过基于贝尔曼方程迭代的“值迭代”,或者通过基于策略评估和策略改进之间的迭代的“策略迭代”,来改进近似。 改进的近似的“成本去”功能可以用来实现最优控制在计算上有效的方式,通过减少一个大的地平线问题到一个等效的短期问题,或通过允许离线参数化的改进的控制律。为了使该方法在过程控制中切实可行,需要解决一些问题。 该方法的成功将取决于能否获得一个准确和稳健的剩余成本函数近似值。 一个直接的问题是什么类型的函数逼近器最适合近似。 此外,在控制计算中需要考虑通过内插和外推的神经网络成本预测的置信水平。 PI计划调查这些和其他基本问题,以获得系统和实际有用的答案。 PI将与工业合作伙伴Weyerhauser,Owens Corning,LG Chemicals和白杨Technology合作,在真实的工业过程中测试开发的工具,并将其纳入商业过程控制软件包。 该项目的应用部分将由这些公司支持的学生和参观者进行。更广泛的影响:化学过程工业(CPI)充满了涉及重大不确定性的非线性控制问题,这可以从这项工作中受益。 除了过程控制之外,该策略还适用于不确定性下的计划和调度问题以及供应链运作问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Lee其他文献

Wenliang Geng, Ying Liu, Tianqi Rong, Jingwen Shao, Bin Li. Characteristics of the Spatio-Temporal Trends and Driving Factors of Industrial Development and Industrial SO2 Emissions Based on Niche Theory: Taking Henan Province as an Example
耿文亮,刘英,荣天琪,邵静文,李斌。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Pengyan Zhang;Yu Zhang;Jay Lee;Yanyan Li;Jiaxin Yang;Wenliang Geng;Ying Liu;Tianqi Rong;Jingwen Shao;Bin Li
  • 通讯作者:
    Bin Li
Predictive monitoring and failure prevention of vehicle electronic components and sensor systems
汽车电子元件和传感器系统的预测性监测和故障预防
  • DOI:
    10.4271/2006-01-0373
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Liao;Jay Lee
  • 通讯作者:
    Jay Lee
Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing
用于先进制造的创新超硬材料和可持续涂层
Neighborhood Racial Segregation Predict the Spatial Distribution of Supermarkets and Grocery Stores Better than Socioeconomic Factors in Cleveland, Ohio: a Bayesian Spatial Approach
俄亥俄州克利夫兰的社区种族隔离比社会经济因素更能预测超市和杂货店的空间分布:贝叶斯空间方法
MA09.07 Phase I Trial of in situ Vaccination with CCL21 Gene-Modified DC Induces Specific Systemic Immune Response and Tumor Infiltrating CD8<sup>+</sup> T Cells
  • DOI:
    10.1016/j.jtho.2016.11.448
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jay Lee;Mi-Heon Lee;Edward Garon;Jonathan W. Goldman;Felicita Baratelli;Dorthe Schaue;Gerald Wang;Frances Rosen;Jane Yanagawa;Tonya Walser;Ying Lin;Sharon Adams;Francesco Marincola;Paul Tumeh;Fereidoun Abtin;Robert Suh;Karen Reckamp;William Wallace;Gang Zeng;David Elashoff
  • 通讯作者:
    David Elashoff

Jay Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay Lee', 18)}}的其他基金

EAGER/Cybermanufacturing Systems: Fleet-Sourced Cyber Manufacturing Applications for Improved Transparency and Resilience of Manufacturing Assets and Systems
EAGER/网络制造系统:源自车队的网络制造应用程序,可提高制造资产和系统的透明度和弹性
  • 批准号:
    1550433
  • 财政年份:
    2015
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
I/UCRC FRP: Collaborative Research on Event-based Analytics for Enhanced Prognostics Design in a Big Data Environment
I/UCRC FRP:基于事件的分析的协作研究,以增强大数据环境中的预测设计
  • 批准号:
    1331669
  • 财政年份:
    2013
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
I/UCRC: Collaborative Research on Coupled Models for Prognostics and Health Management
I/UCRC:预测与健康管理耦合模型的合作研究
  • 批准号:
    1230840
  • 财政年份:
    2012
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
I-Corps: Predictive Technology for Failure Prevention of Industrial Machinery
I-Corps:工业机械故障预防的预测技术
  • 批准号:
    1243425
  • 财政年份:
    2012
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
NSF I/UCRC 5-Year Renewal, Phase III
NSF I/UCRC 5 年续展,第三阶段
  • 批准号:
    1134684
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design of Accelerated Prognostics and Health Management
合作研究:加速预测和健康管理的设计
  • 批准号:
    1127924
  • 财政年份:
    2011
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
A Systematic Methodology for Data Validation and Verification for Prognostics Applications
预测应用数据验证和验证的系统方法
  • 批准号:
    1031986
  • 财政年份:
    2010
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
US-Egypt Workshop: Intelligent Decision Support Tools for Prognostics and Health Management
美国-埃及研讨会:用于预测和健康管理的智能决策支持工具
  • 批准号:
    0929527
  • 财政年份:
    2009
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Developing a Telematics Platform for Bridge Monitoring and Health Prognostics
开发用于桥梁监测和健康预测的远程信息处理平台
  • 批准号:
    0732457
  • 财政年份:
    2007
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Industry/University Cooperative Research Center for Intelligent Maintenance Systems (IMS): FIVE-Year Renewal Proposal
智能维护系统产学合作研究中心(IMS):五年更新提案
  • 批准号:
    0639469
  • 财政年份:
    2006
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Continuing Grant

相似国自然基金

原生动物四膜虫生殖小核(germline nucleus)体功能(somatic function)的分子基础研究
  • 批准号:
    31872221
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Towards Provably Efficient Representation Learning in Reinforcement Learning via Rich Function Approximation
RI:小:通过丰富函数逼近实现强化学习中可证明有效的表示学习
  • 批准号:
    2154711
  • 财政年份:
    2022
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Probabilistic Foundations for Reinforcement Learning with Nonlinear Function Approximation
非线性函数逼近强化学习的概率基础
  • 批准号:
    548070-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RI: Medium: Provable Reinforcement Learning with Function Approximation and Neural Networks
RI:中:使用函数逼近和神经网络的可证明强化学习
  • 批准号:
    2107304
  • 财政年份:
    2021
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Towards Benchmarking Average-Reward Reinforcement Learning Algorithms on Continuing Tasks in the Function Approximation Setting
在函数逼近设置中对连续任务的平均奖励强化学习算法进行基准测试
  • 批准号:
    565466-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Probabilistic Foundations for Reinforcement Learning with Nonlinear Function Approximation
非线性函数逼近强化学习的概率基础
  • 批准号:
    548070-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
IIS:RI Theoretical Foundations of Reinforcement Learning: From Tabula Rasa to Function Approximation
IIS:RI 强化学习的理论基础:从白板到函数逼近
  • 批准号:
    2110170
  • 财政年份:
    2021
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Anisotropy and non-stationarity in statistical learning, and its influence on the convergence of function approximation
统计学习中的各向异性和非平稳性及其对函数逼近收敛性的影响
  • 批准号:
    2436448
  • 财政年份:
    2020
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Studentship
CIF: Small: Reinforcement Learning with Function Approximation: Convergent Algorithms and Finite-sample Analysis
CIF:小型:带有函数逼近的强化学习:收敛算法和有限样本分析
  • 批准号:
    2007783
  • 财政年份:
    2020
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Standard Grant
Efficient approximation algorithm design using function approximation
使用函数逼近的高效逼近算法设计
  • 批准号:
    15K15945
  • 财政年份:
    2015
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The optimum approximation theory based approach to combinatorial optimization problem of approximating given objective function by combining multiple events having prescribed characteristic
基于最佳逼近理论的组合优化问题的方法,通过组合具有规定特征的多个事件来逼近给定的目标函数
  • 批准号:
    25820165
  • 财政年份:
    2013
  • 资助金额:
    $ 21.42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了