A Systematic Methodology for Data Validation and Verification for Prognostics Applications
预测应用数据验证和验证的系统方法
基本信息
- 批准号:1031986
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal seeks funding for the Center for Intelligent Maintenance Systems studies conducted by the University of Cincinnati site (lead), the Missouri University of Science and Technology site and the University of Michigan site. Funding Requests for Fundamental Research are authorized by an NSF approved solicitation, NSF 10-507. The solicitation invites I/UCRCs to submit proposals for support of industry-defined fundamental research. The proposed research focuses on methods for controlling and evaluating the quality of data used in prognostic applications of system health and indicating when maintenance is needed. The proposal is well conceived, well organized, and the goals and objectives of the research are presented well. The tasks to be accomplished over the two years are clearly outlined, as well as which of the cooperating institutions will carry out the work. The proposed research answers a significant research question raised by the industrial partners. For many companies assuring the quality of datasets before actually performing prognostics can avoid unnecessary investment in redundant prognostics analysis due to poor quality datasets. Assured data quality will improve prognostics results, which leads to better maintenance decisions and significant cost saving. The IMS Center has actively involved minority and female graduate students and has provided a number of Research Experience for Teachers and Undergraduates (RET and REU) projects.
该提案旨在为辛辛那提大学网站(牵头)、密苏里州科技大学网站和密歇根大学网站进行的智能维护系统研究中心提供资金。基础研究的资助申请由NSF批准的招标(NSF 10-507)授权。 征集邀请I/UCRC提交支持行业定义的基础研究的提案。 拟议的研究重点是用于控制和评估系统健康的预测应用程序中使用的数据的质量,并指示何时需要维护的方法。该提案构思良好,组织良好,研究的目标和目的也很好地提出。明确概述了两年中要完成的任务,以及由哪个合作机构开展工作。拟议的研究回答了工业合作伙伴提出的一个重要研究问题。对于许多公司来说,在实际执行故障诊断之前确保数据集的质量可以避免由于质量差的数据集而在冗余故障诊断分析中进行不必要的投资。有保证的数据质量将改善性能测试结果,从而做出更好的维护决策并显著节省成本。IMS中心积极参与少数民族和女性研究生,并为教师和本科生(RET和REU)项目提供了一些研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay Lee其他文献
Predictive monitoring and failure prevention of vehicle electronic components and sensor systems
汽车电子元件和传感器系统的预测性监测和故障预防
- DOI:
10.4271/2006-01-0373 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
H. Liao;Jay Lee - 通讯作者:
Jay Lee
Wenliang Geng, Ying Liu, Tianqi Rong, Jingwen Shao, Bin Li. Characteristics of the Spatio-Temporal Trends and Driving Factors of Industrial Development and Industrial SO2 Emissions Based on Niche Theory: Taking Henan Province as an Example
耿文亮,刘英,荣天琪,邵静文,李斌。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Pengyan Zhang;Yu Zhang;Jay Lee;Yanyan Li;Jiaxin Yang;Wenliang Geng;Ying Liu;Tianqi Rong;Jingwen Shao;Bin Li - 通讯作者:
Bin Li
Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing
用于先进制造的创新超硬材料和可持续涂层
- DOI:
10.1007/1-4020-3471-7 - 发表时间:
2005 - 期刊:
- 影响因子:2.9
- 作者:
Sustainable Coatings;Jay Lee;N. Novikov;V. Turkevich - 通讯作者:
V. Turkevich
Neighborhood Racial Segregation Predict the Spatial Distribution of Supermarkets and Grocery Stores Better than Socioeconomic Factors in Cleveland, Ohio: a Bayesian Spatial Approach
俄亥俄州克利夫兰的社区种族隔离比社会经济因素更能预测超市和杂货店的空间分布:贝叶斯空间方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Ortis Yankey;Jay Lee;R. Gardenhire;E. Borawski - 通讯作者:
E. Borawski
Very low energy diets before nonbariatric surgery: A systematic review and meta-analysis
- DOI:
10.1016/j.surg.2022.09.006 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Tyler McKechnie;Christopher A. Povolo;Jay Lee;Yung Lee;Lily Park;Aristithes G. Doumouras;Dennis Hong;Mohit Bhandari;Cagla Eskicioglu - 通讯作者:
Cagla Eskicioglu
Jay Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay Lee', 18)}}的其他基金
EAGER/Cybermanufacturing Systems: Fleet-Sourced Cyber Manufacturing Applications for Improved Transparency and Resilience of Manufacturing Assets and Systems
EAGER/网络制造系统:源自车队的网络制造应用程序,可提高制造资产和系统的透明度和弹性
- 批准号:
1550433 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I/UCRC FRP: Collaborative Research on Event-based Analytics for Enhanced Prognostics Design in a Big Data Environment
I/UCRC FRP:基于事件的分析的协作研究,以增强大数据环境中的预测设计
- 批准号:
1331669 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I/UCRC: Collaborative Research on Coupled Models for Prognostics and Health Management
I/UCRC:预测与健康管理耦合模型的合作研究
- 批准号:
1230840 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
I-Corps: Predictive Technology for Failure Prevention of Industrial Machinery
I-Corps:工业机械故障预防的预测技术
- 批准号:
1243425 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NSF I/UCRC 5-Year Renewal, Phase III
NSF I/UCRC 5 年续展,第三阶段
- 批准号:
1134684 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Design of Accelerated Prognostics and Health Management
合作研究:加速预测和健康管理的设计
- 批准号:
1127924 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
US-Egypt Workshop: Intelligent Decision Support Tools for Prognostics and Health Management
美国-埃及研讨会:用于预测和健康管理的智能决策支持工具
- 批准号:
0929527 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Developing a Telematics Platform for Bridge Monitoring and Health Prognostics
开发用于桥梁监测和健康预测的远程信息处理平台
- 批准号:
0732457 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Industry/University Cooperative Research Center for Intelligent Maintenance Systems (IMS): FIVE-Year Renewal Proposal
智能维护系统产学合作研究中心(IMS):五年更新提案
- 批准号:
0639469 - 财政年份:2006
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research on a Unified Prognostics Approach for Vehicle Electronics using Physics-of-Failure Driven Sensor Fusion
使用故障物理驱动传感器融合的车辆电子统一预测方法的合作研究
- 批准号:
0533321 - 财政年份:2005
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2350257 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs
高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法
- 批准号:
2310943 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Creating a Shared Purpose and Methodology for Curating Data to Prevent Domestic and Sexual Violence at a Systems Level
创建共同的目的和方法来管理数据,以在系统层面预防家庭暴力和性暴力
- 批准号:
465292 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Operating Grants
Statistical Methodology for Correlated Data in Health Sciences
健康科学相关数据的统计方法
- 批准号:
RGPIN-2019-04741 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
- 批准号:
RGPIN-2018-05476 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Emerging data fusion methodology in multisensor integrated navigation for challenging environments
适用于挑战性环境的多传感器集成导航中的新兴数据融合方法
- 批准号:
RGPIN-2017-05717 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Methodology of Learning Optimal Decisions from Market Data in Financial Technology
金融科技中从市场数据学习最优决策的方法
- 批准号:
RGPIN-2020-04331 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Compositional Data Methodology in the Context of Quantitative Fatty Acid Signature Analysis
定量脂肪酸特征分析背景下的成分数据方法
- 批准号:
RGPIN-2022-03217 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
The DEPRESsion Screening Data (DEPRESSD) Project: A Novel International Individual Participant Data Meta-analysis Collaboration to Advance Research on Depression Screening Tool Accuracy, Develop Statistical Methodology, and Conduct Meta-Research
抑郁症筛查数据 (DEPRESSD) 项目:一项新颖的国际个人参与者数据荟萃分析合作,旨在推进抑郁症筛查工具准确性的研究、开发统计方法并进行荟萃研究
- 批准号:
461874 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Operating Grants