Multi-Scale Analysis and Simulation of Nanofiber Coatings: Growth and Applications

纳米纤维涂层的多尺度分析和模拟:增长和应用

基本信息

  • 批准号:
    0305580
  • 负责人:
  • 金额:
    $ 10.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2005-01-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS-0305580PI: Gerald W. Young [gwyoung@uakron.edu]Institution: University of AkronTitle: MULTISCALE ANALYSIS AND SIMULATION OF NANOFIBER COATINGS: GROWTH AND APPLICATIONSABSTRACTThis project proposes to develop multiscale mathematical models and algorithms for simulating the growth of a coating on a nanofiber. There is potential application for coated nanofibers, and the nanotubes that result after dissolution of the nanofiber cores, in the areas of filtration, composites, biomedicine, and electronics. The ever increasing demand for these high quality nanomaterials applications drives the need for models that describe the coating process as well as models that describe the material and electromagnetic properties of manufactured nanofibers and nanotubes. The coating of nanofibers by physical vapor deposition (PVD) methods is a process that is only partially understood. While data on nanodeposition techniques have been collected for over a decade, a comprehensive quantitative model of the coating process has not yet been developed. The proposed research addresses this timely need by outlining a plan to develop truly multiscale models and simulations of coating growth at the continuum length scale while proceeding hand-in-hand with experimental validation. The PVD method allows for control over the experimental conditions so that comparisons between the experimental results and themodel predictions will be straightforward. The plan to link asymptotic analysis, numerical simulation, quantum mechanics and molecular dynamics constitutes a major step in the study of nanoscale phenomena. The models and simulations will connect global continuum models in a PVD plasma reactor, local nanoscale models around a coated fiber, and quantummechanical and molecular dynamics models at the atomistic scale. These models will provide inputs to a macroscopic scale model of the coating growth so that the morphology of the coating can be tracked via a level set method. The overall goals of the multiscale modeling, simulation, and experimental efforts are to provide an understanding of how PVD process parameters affect the coating growth, to identify an optimal range of parameters for controlling the growth, to explain experimental observations of coating growth that are not well understood, and to determine the effective electromagnetic properties of the completed product.This project proposes to develop multiscale mathematical models and algorithms for simulating the growth of a coating on a nanofiber. The coating of nanofibers with specific materials is a relatively new process for producing coated nanofibers and nanotubes (that result after removing the nanofiber cores). These nanostructures have many potential applications in filtration, composites, biomedicine, and electronics. The proposed combination of modeling and experimental efforts will help to address the fundamental unanswered questions concerning the physics and chemistry of nanofiber coating and the properties of the coating. In particular, this project will provide the understanding necessary to control the coating thickness and uniformity to produce nanotubes with desired dimensional features. In addition to its impact on scientific research, this project will enhance the training of graduate students in nanoscale modeling. This is essential for the development of a strong industrial base in nanotechnology. This research project will allow The University of Akron to develop the expertise necessary to augment existing programs to include a specialization in nanotechnology modeling, at the graduate and the undergraduate level. Further, it is anticipated that the enhanced understanding of nanoscale manufacturing processes gained during this research effort will allow manufacturers to improve existing products and to develop new products.
提案:DMS-0305580 PI:Gerald W. Young [gwyoung@uakron.edu]机构:University of Akron标题:纳米纤维涂层的多尺度分析和模拟:生长和应用SABSTRACTThis项目提出了开发多尺度数学模型和算法,用于模拟涂层的生长。 有涂层的纳米纤维,和纳米管的溶解后,在过滤,复合材料,生物医学和电子领域的结果,有潜在的应用。 对这些高质量纳米材料应用的不断增长的需求推动了对描述涂层过程的模型以及描述制造的纳米纤维和纳米管的材料和电磁特性的模型的需求。 通过物理气相沉积(PVD)方法涂覆纳米纤维是一种仅被部分理解的工艺。 虽然有关纳米沉积技术的数据已经收集了十多年,但尚未开发出涂层过程的全面定量模型。 拟议的研究解决了这一及时的需要,概述了一个计划,以开发真正的多尺度模型和模拟涂层生长的连续长度尺度,同时进行手牵手的实验验证。 PVD方法允许控制实验条件,以便实验结果和模型预测之间的比较将是直接的。 将渐近分析、数值模拟、量子力学和分子动力学联系起来的计划是纳米级现象研究的重要一步。 这些模型和模拟将连接PVD等离子体反应器中的全球连续模型、涂层光纤周围的局部纳米级模型以及原子尺度的量子力学和分子动力学模型。 这些模型将为涂层生长的宏观尺度模型提供输入,以便可以通过水平集方法跟踪涂层的形态。 多尺度建模、模拟和实验努力的总体目标是提供对PVD工艺参数如何影响涂层生长的理解,以识别用于控制生长的参数的最佳范围,以解释尚未很好理解的涂层生长的实验观察,并确定成品的有效电磁特性。本项目提出开发多尺度数学模型和算法,模拟涂层在衬底上的生长。 用特定材料涂覆纳米纤维是用于生产涂覆的纳米纤维和纳米管(其在去除纳米芯之后产生)的相对较新的工艺。 这些纳米结构在过滤、复合材料、生物医学和电子学中具有许多潜在的应用。 所提出的建模和实验的努力相结合,将有助于解决有关的物理和化学的涂层和涂层的性能的基本未回答的问题。 特别是,该项目将提供必要的理解,以控制涂层厚度和均匀性,以生产具有所需尺寸特征的纳米管。 除了对科学研究的影响外,该项目还将加强对研究生进行纳米级建模的培训。 这对于发展纳米技术的强大工业基础至关重要。 这个研究项目将允许阿克伦大学发展必要的专业知识,以增强现有的计划,包括在纳米技术建模专业化,在研究生和本科水平。 此外,预计在这项研究工作中获得的纳米级制造工艺的增强理解将使制造商能够改进现有产品并开发新产品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald Young其他文献

Causality and Causation in Law, Medicine, Psychiatry, and Psychology: Progression or Regression?
  • DOI:
    10.1007/s12207-008-9017-0
  • 发表时间:
    2008-10-02
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Gerald Young
  • 通讯作者:
    Gerald Young
Trauma and Psychological Injury: Practice, Clinical, Legal, and Ethical Issues
  • DOI:
    10.1007/s12207-009-9033-8
  • 发表时间:
    2009-02-24
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Gerald Young;Izabela Z. Schultz
  • 通讯作者:
    Izabela Z. Schultz
The Culturally Minded Independent Psychological Examiner: A Review of Indian and Chinese Cultural Characteristics and its Implications for Psychological Injury
  • DOI:
    10.1007/s12207-024-09513-8
  • 发表时间:
    2024-06-26
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Sanghamithra Ramani;Gerald Young;Konstantine K. Zakzanis
  • 通讯作者:
    Konstantine K. Zakzanis
The Ruff Neurobehavioral Inventory: Validity Indicators and Validity
  • DOI:
    10.1007/s12207-009-9030-y
  • 发表时间:
    2009-03-03
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Gerald Young;Natasha L. Merali;Ronald M. Ruff
  • 通讯作者:
    Ronald M. Ruff
Psychological Injury and Law: Editorial Policies on Defamation and Disclosure
  • DOI:
    10.1007/s12207-009-9038-3
  • 发表时间:
    2009-02-21
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Gerald Young
  • 通讯作者:
    Gerald Young

Gerald Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerald Young', 18)}}的其他基金

Modeling and Analysis of an Electrochemical Nanocell
电化学纳米电池的建模和分析
  • 批准号:
    0305577
  • 财政年份:
    2003
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
Modeling and Scaling of Material Processing Systems
材料加工系统的建模和缩放
  • 批准号:
    9972185
  • 财政年份:
    1999
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Modeling of Material Processing Systems
数学科学:材料处理系统建模
  • 批准号:
    9532021
  • 财政年份:
    1996
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    8957534
  • 财政年份:
    1989
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Research Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 10.63万
  • 项目类别:
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
  • 批准号:
    2327640
  • 财政年份:
    2023
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
Biomedical engineering multi-scale ventricular diastolic function analysis to elucidate the pathogenesis of diastolic heart failure
生物医学工程多尺度心室舒张功能分析阐明舒张性心力衰竭发病机制
  • 批准号:
    23H00556
  • 财政年份:
    2023
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
A multi-scale analysis of modularity and ontogenetic changes in morphology and locomotor biomechanics in the domestic dog
家犬形态和运动生物力学的模块化和个体发生变化的多尺度分析
  • 批准号:
    BB/X014819/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Research Grant
Analysis of multi-scale biomechanical design principles of plant tissues and developmental processes
植物组织和发育过程的多尺度生物力学设计原理分析
  • 批准号:
    RGPIN-2018-04714
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Discovery Grants Program - Individual
Location, Time, and Scale in GIS-Based Multi-Criteria Decision Analysis - Advancing the Agenda
基于 GIS 的多标准决策分析中的位置、时间和规模 - 推进议程
  • 批准号:
    RGPIN-2016-04649
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Discovery Grants Program - Individual
A multi-scale analysis of subglacial hydrology and ice dynamics
冰下水文学和冰动力学的多尺度分析
  • 批准号:
    RGPIN-2017-03761
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-scale analysis and design of sustainable structural composites
可持续结构复合材料的多尺度分析与设计
  • 批准号:
    DGECR-2022-00018
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了