Aspects of Discrete Tomography
离散断层扫描的各个方面
基本信息
- 批准号:0306215
- 负责人:
- 金额:$ 22.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Herman The investigator develops new theoretical results(uniqueness, existence, and complexity theories) in discretetomography), new reconstruction methods (for the case ofabsorption and for label distributions), and applications(neutron tomography). To obtain these results, methods ofdiscrete mathematics, probability theory, and computer scienceare applied, including modeling and simulation studies bycomputers. The new problems that the investigator studies are:(a) discrete tomography with absorption; (b) estimation of theparameters of Gibbs priors to be used in binary tomography; (c)direct recovery of label distributions from projection data; and(d) mathematical problems of reconstruction in neutrontomography. Roughly speaking, tomography deals with the problems ofrecognizing an object from a limited number of views of it, andof discriminating between objects from a limited number of viewsof them. Mathematically, the idea is to reconstruct amultidimensional function that describes, having only a fewlower-dimensional samples -- projections -- of the function.Discrete tomography deals with a special type of tomographicinverse problem in which the function to be reconstructed fromits projections is discrete (i.e., has only a few elements in itsrange of values). In the special case when the function is binary(only two possible values), prior information can be used torecover it from very few (e.g., only 2 or 3) projections.Discrete tomography has some fascinating applications, forexample, in medicine, molecular biology, electron microscopy,security, and nondestructive testing. In this project theinvestigator studies problems in discrete tomography, developsnew methods to reconstruct functions, and considers applicationsin neutron tomography. Other broad impacts include theinvolvement of students in the work of the project, aninternational collaboration with a faculty associate in Hungaryand jointly run research seminar at CUNY, and a workshop on theapplications of discrete tomography.
赫尔曼 研究人员开发新的理论结果(唯一性,存在性和复杂性理论)在离散断层扫描),新的重建方法(吸收和标签分布的情况下),和应用(中子断层扫描)。 为了得到这些结果,离散数学,概率论和计算机科学的方法被应用,包括计算机建模和仿真研究。 研究者研究的新问题是:(a)吸收的离散层析;(B)用于二元层析的Gibbs先验参数的估计;(c)从投影数据直接恢复标记分布;(d)中子层析重建的数学问题。 粗略地说,层析成像处理的问题是从有限的几个视角中识别一个物体,以及从有限的几个视角中区分物体。 从数学上讲,其思想是重建一个多维函数,该函数仅描述函数的几个低维样本-投影。离散断层扫描处理一种特殊类型的断层扫描逆问题,其中要从投影重建的函数是离散的(即,在它的取值范围内只有几个元素)。 在特殊情况下,当函数是二进制的(只有两个可能的值),先验信息可以用来恢复它从很少(例如,离散层析成像在医学、分子生物学、电子显微镜、安全和无损检测等方面有着令人着迷的应用。 在该项目中,研究者研究离散层析成像中的问题,开发新的函数重建方法,并考虑在中子层析成像中的应用。 其他广泛的影响包括学生参与该项目的工作,与匈牙利的一名教员合作并在纽约市立大学联合举办研究研讨会,以及关于离散断层扫描应用的研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor Herman其他文献
Gabor Herman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor Herman', 18)}}的其他基金
Computational Methods for Inverting the Soft X-Ray Transform
软 X 射线变换逆变换的计算方法
- 批准号:
1114901 - 财政年份:2011
- 资助金额:
$ 22.96万 - 项目类别:
Continuing Grant
U.S.-Hungary Mathematics Workshop on Discrete Tomography; Szeged, Hungary; August 25-27, 1997
美国-匈牙利离散断层扫描数学研讨会;
- 批准号:
9602103 - 财政年份:1996
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant
US-Hungary Research on Computational and Mathematical Aspects of Multidimensional Image Processing
美国-匈牙利关于多维图像处理的计算和数学方面的研究
- 批准号:
9121281 - 财政年份:1992
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant
Methods For Solving Large and Sparse Linearly Constrained Nonlinear Optimization Problems With Applications to Image Reconstruction
解决大型稀疏线性约束非线性优化问题的方法及其在图像重建中的应用
- 批准号:
8117908 - 财政年份:1982
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant
Graphics and Microprogramming in Image Reconstruction
图像重建中的图形和微编程
- 批准号:
7522347 - 财政年份:1976
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant
CRII: FET: Quantum Advantages through Discrete Quantum Walks
CRII:FET:离散量子行走的量子优势
- 批准号:
2348399 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Fellowship
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Continuing Grant
Identifying user preferences to optimize HIV/Sexually Transmitted infections test among international migrants and tourists in Japan: A Discrete Choice Experiment
确定用户偏好以优化日本国际移民和游客的艾滋病毒/性传播感染测试:离散选择实验
- 批准号:
24K20238 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harnessing the Reactivity of Strained Macrocycles to Access Discrete Carbon Nanostructures
利用应变大环化合物的反应性来获得离散的碳纳米结构
- 批准号:
2400147 - 财政年份:2024
- 资助金额:
$ 22.96万 - 项目类别:
Standard Grant