Problem conditioning in convex optimization: theory and algorithms
凸优化中的问题调节:理论与算法
基本信息
- 批准号:0306240
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-15 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Convex optimization is an important area of mathematical optimization. Recently a new and powerful theory of condition numbers for convex conic linear optimization problems has been developed. These numbers capture the intuitive notion of problem conditioning as a measure of problem sensitivity to perturbations in the input data. They are important in studying many of the behavioral characteristics of these problems. This research investigates the role that conditioning plays in problem behavior. Of particular interest is the performance of algorithms for solving the problem, and the ability to perform meaningful sensitivity analysis on the problem data. Two distinct but related avenues of this research are developing methods of preconditioning of optimization problems (i.e., finding an equivalent reformulation of the problem at hand which possesses better properties) with the eventual goal to explore and quantify various preprocessing methods in practical optimization algorithms, and extending the notion of problem conditioning to practical problems which often lie outside the conic linear form, leading to better understanding of problem behavior, ability to perform meaningful sensitivity analysis, and potential improvement in performance of algorithms. The broad goal is to improve the modeling and solution capabilities of optimization, which is a fundamental tool of operations research. The specific focus is on exploring the methods to measure and improve the so-called "conditioning" of optimization problems, i.e., identifying the underlying properties of the problem at hand that dictate problem behavior, such as sensitivity of the solutions to perturbation in the problem data, the relative ease or difficulty of solving the problem via numerical algorithms, etc. Recognition of these properties motivates obtaining improved formulations and solution techniques of many optimization problems of great practical importance.
凸优化是数学优化的一个重要领域。最近,一个新的和强大的理论条件数的凸锥线性优化问题已经发展。这些数字捕捉了问题条件反射的直观概念,作为对输入数据中扰动的问题敏感性的度量。它们在研究这些问题的许多行为特征方面很重要。本研究探讨了条件反射在问题行为中的作用。特别感兴趣的是解决问题的算法的性能,以及对问题数据执行有意义的敏感性分析的能力。这项研究的两个不同但相关的途径是开发优化问题的预处理方法(即,找到具有更好性质的手头问题的等价重新表述),最终目标是探索和量化实际优化算法中的各种预处理方法,并将问题调节的概念扩展到通常位于圆锥线性形式之外的实际问题,导致更好地理解问题行为,执行有意义的灵敏度分析的能力,以及算法性能的潜在改进。广泛的目标是提高优化的建模和求解能力,这是运筹学的基本工具。具体的重点是探索方法来衡量和改善所谓的“条件”的优化问题,即,识别当前问题的基本属性,这些属性决定了问题的行为,例如解决方案对问题数据中的扰动的敏感性,通过数值算法解决问题的相对容易或困难等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Epelman其他文献
Using Unbalanced Trees for Indexing Multidimensional Objects
- DOI:
10.1007/bf03325102 - 发表时间:
2013-07-13 - 期刊:
- 影响因子:3.100
- 作者:
Charu Aggarwal;Joel Wolf;Philip Yu;Marina Epelman - 通讯作者:
Marina Epelman
Marina Epelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marina Epelman', 18)}}的其他基金
Analysis and Algorithms for Countably Infinite Linear Programming Models of Markov Decision Processes
马尔可夫决策过程可数无限线性规划模型的分析与算法
- 批准号:
1333260 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Approximate Fictitious Play for the Optimization of Complex Systems
协作研究:复杂系统优化的近似虚拟游戏
- 批准号:
0830092 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Fictitious Play for Complex Systems Optimization
复杂系统优化的虚拟游戏
- 批准号:
0422752 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
聚合铁-腐殖酸混凝沉淀-絮凝调质过程中絮体污泥微界面特性和群体流变学的研究
- 批准号:20977008
- 批准年份:2009
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Moral Injury and the Ethics of Military Conditioning
道德伤害与军事训练的伦理
- 批准号:
DP240102082 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
-- - 项目类别:
BEIS-Funded Programmes
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using trained immunity-inhibiting nanobiologics to achieve tolerance of heart allografts in non-human primates
使用经过训练的免疫抑制纳米生物制剂来实现非人类灵长类动物同种异体心脏移植的耐受性
- 批准号:
10642598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Characterization and Optimization of a Nanofiber-Hydrogel Composite for Tissue Remodeling
用于组织重塑的纳米纤维-水凝胶复合材料的表征和优化
- 批准号:
10678462 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Causal Impact of Poverty Reduction on Housing Conditions of Low-Income, U.S. Children and the Role of Housing and Neighborhood Ecosystems on Young Children's Healthy Development
减贫对美国低收入儿童住房条件的因果影响以及住房和邻里生态系统对幼儿健康发展的作用
- 批准号:
10678527 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Patterns in Women's Unmet Sexual and Reproductive Healthcare Needs Over the Life Course
女性一生中未满足的性和生殖保健需求的模式
- 批准号:
10677345 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operant conditioning of sensory evoked potentials to reduce phantom limb pain
感觉诱发电位的操作性条件反射可减少幻肢痛
- 批准号:
10703170 - 财政年份:2023
- 资助金额:
-- - 项目类别: