Likelihood ratio inference in nonparametric monotone function estimation problems

非参数单调函数估计问题中的似然比推断

基本信息

项目摘要

AbstractPI: M. Banerjee, DMS-0306235Title: Likelihood ratio inference in nonparametric monotone function estimation problemsThe research program primarily concerns statistical inference using likelihood based methods and especially, likelihood ratios in nonparametric monotone function estimation problems. A distinguishing feature of the monotone function models is a slower (cube root of n) pointwise rate of convergence of maximum likelihood estimators of the monotone function of interest, with a non-Gaussian limit distribution; this property is referred to as ``non-regularity''. While some progress in likelihood based inference for these problems has been achievedover the past few decades, the behavior of likelihood ratios is by andlarge unknown. In this project, the P.I. seeks to develop a theory oflikelihood ratio inference for these ``non-regular'' monotone functionmodels. This is motivated by the wide applicability of likelihood ratio based inference in regular parametric, semiparametric and nonparametric problems. The emergence of a chi-squared distribution as the limit of log-likelihood ratios allows the construction of test procedures and confidence regions for the parameters of interest, based on the known chi-squared distributions and circumvents the need to estimate nuisanceparameters. It is thus natural to ask whether the advantages of the likelihood ratio paradigm carry over to the domain of shape-restricted (and more particularly, monotone) function estimation. The current research program investigates this for various models and applications of interest. More specifically, the main components of the proposed research program are: (i) Investigation of the universality of the limit, D (ii) Studying monotone function models with measured covariates on the individuals, which is typically the case in applications, from both nonparametric and semiparametric angles(iii) Developing methods of constructing pointwise confidence sets and confidence bands for monotone functions of interest using likelihood based methods and comparison of these procedures to currently existing methods. Also on the agenda are related research issues, like the study of competing likelihood ratio statistics and the computational and analytical characterization of the associated limit distributions.The study of shape--restricted functions arises in a wide variety of problems. In particular, monotonicity, which is a very natural shape-constraint appears in many different areas of application, such as reliability, renewal theory, survival analysis, epidemiology, biomedical studies and astronomy. Through its use of attractive statistical concepts like likelihood and likelihood ratios, for estimating monotone functions, this project is expected to have a broad impact on the theory and practice of nonparametric statistics. It will lead to significantly improved methods for analyzing data using likelihood ratio based methods in medicine, public health, reliability and numerous other application areas and will trigger the development of analogous methods of statistical inference in related fields. The ideas and results of this project will also be fruitful in the training and development of future statisticians through inclusion in the curriculum of advanced courses.
摘要PI:M. Banerjee,DMS-0306235标题:非参数单调函数估计问题中的似然比推断研究计划主要涉及使用基于似然的方法进行统计推断,特别是非参数单调函数估计问题中的似然比。单调函数模型的一个显着特征是感兴趣的单调函数的最大似然估计的逐点收敛速度较慢(n的立方根),具有非高斯极限分布;这种特性被称为“非正则性”。虽然在过去的几十年里,这些问题的基于似然的推理取得了一些进展,但似然比的行为基本上是未知的。在这个项目中,P.I.试图为这些“非正则”单调函数模型建立一个似然比推断理论。这是由于基于似然比的推理在常规参数、半参数和非参数问题中的广泛适用性。卡方分布作为对数似然比的极限的出现允许基于已知的卡方分布来构造感兴趣的参数的检验程序和置信区域,并且规避了估计nuisanceparameters的需要。因此,很自然地会问,似然比范式的优点是否延续到形状限制(更具体地说,单调)函数估计的领域。目前的研究计划调查了各种模型和感兴趣的应用。更具体地说,拟议研究方案的主要组成部分是:(i)极限的普适性研究,D(ii)研究个体上具有测量协变量的单调函数模型,这是应用中的典型情况,从非参数和半参数角度(iii)开发使用基于似然的方法为感兴趣的单调函数构建逐点置信集和置信带的方法,并将这些方法与现有方法进行比较。议程上还包括相关的研究问题,如竞争似然比统计的研究和相关极限分布的计算和分析表征。形状限制函数的研究出现在各种各样的问题中。特别是,单调性,这是一个非常自然的形状约束出现在许多不同的应用领域,如可靠性,更新理论,生存分析,流行病学,生物医学研究和天文学。通过使用有吸引力的统计概念,如似然和似然比,估计单调函数,该项目预计将对非参数统计的理论和实践产生广泛的影响。它将导致显着改进的方法,用于分析数据,在医学,公共卫生,可靠性和许多其他应用领域的方法,并将触发在相关领域的统计推断的类似方法的发展。该项目的想法和成果也将通过纳入高级课程的课程表,在培训和发展未来的统计人员方面取得丰硕成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Moulinath Banerjee其他文献

Changes in arterial stiffness but not carotid intimal thickness in acromegaly.
肢端肥大症患者的动脉硬度发生变化,但颈动脉内膜厚度没有变化。
  • DOI:
    10.1210/jc.2010-2225
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Angela N Paisley;Moulinath Banerjee;M. Rezai;R. E. Schofield;S. Balakrishnannair;Annie Herbert;Jeremy A L Lawrance;Peter J Trainer;J. Cruickshank
  • 通讯作者:
    J. Cruickshank
Influence of the glucose tolerance test on pro-atherogenic modification of LDL and its relation to paraoxonase activity
  • DOI:
    10.1016/j.atherosclerosis.2011.07.086
  • 发表时间:
    2011-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Handrean Soran;Valentine Charlton-Menys;Nahla Younis;Michael France;Moulinath Banerjee;Kennedy Cruickshank;Paul Durrington
  • 通讯作者:
    Paul Durrington
Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes
中风和糖尿病患者住院肠内喂养期间的血糖管理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    A. W. Roberts;S. Penfold;B. Allan;K. Dhatariya;D. Flanagan;M. Hammersley;R. Hillson;J. James;J. McKnight;R. Malik;G. Rayman;Kate Richie;M. Sampson;M. Savage;A. Scott;D. Stanisstreet;L. Stuart;John Thow;E. Walden;C. Walton;P. Winocour;S. Ashton‐Cleary;Moulinath Banerjee;Hannah Berkeley;Caroline Brooks;D. Bruce;L. Dinning;Beverley Eaglesfield;S. Gregory;T. Hughes;P. Kar;Samson O Oyibo;Siân Rilstone;N. Robinson;A. Sinclair;D. Voigt;L. Wessels;Joy Williams
  • 通讯作者:
    Joy Williams
Estimating Fréchet bounds for validating programmatic weak supervision
估计 Fréchet 界限以验证程序性弱监督
  • DOI:
    10.48550/arxiv.2312.04601
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Felipe Maia Polo;M. Yurochkin;Moulinath Banerjee;Subha Maity;Yuekai Sun
  • 通讯作者:
    Yuekai Sun
Asymptotics for <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll" class="math"><mi>p</mi></math>-value based threshold estimation under repeated measurements
  • DOI:
    10.1016/j.jspi.2016.01.009
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Atul Mallik;Bodhisattva Sen;Moulinath Banerjee;George Michailidis
  • 通讯作者:
    George Michailidis

Moulinath Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Moulinath Banerjee', 18)}}的其他基金

Planes of Change: New Statistical Methods for Complex Non-Standard Systems
变化平面:复杂非标准系统的新统计方法
  • 批准号:
    1712962
  • 财政年份:
    2017
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Nonregular asymptotics under dependence and inference on change points in graphical networks
图网络中变化点的依赖和推理下的非正则渐近
  • 批准号:
    1308890
  • 财政年份:
    2013
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
A Study of Boundary Phenomena in a Class of Parametric and Nonparametric Problems
一类参数与非参数问题的边界现象研究
  • 批准号:
    1007751
  • 财政年份:
    2010
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Function estimation under shape constraints and detection of thresholds in nonparametric and semiparametric problems
形状约束下的函数估计以及非参数和半参数问题中的阈值检测
  • 批准号:
    0705288
  • 财政年份:
    2007
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant

相似国自然基金

EGF、TGF-β协同调控AHNAK/ANXA2 ratio影响Enlargeosome胞吐和细胞柔软度促进鼻咽癌侵袭转移的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
统计模型中的方差变点问题
  • 批准号:
    11126312
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
  • 批准号:
    2240403
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
GWMODELS. Next-generation models of gravitational-wave sources: harnessing the small-mass-ratio limit
GW模型。
  • 批准号:
    EP/Y008251/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
  • 批准号:
    10537602
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
Strategies to Achieve Viral Suppression for Youth with HIV (The SAVVY Study)
青少年艾滋病病毒感染者实现病毒抑制的策略(SAVVY 研究)
  • 批准号:
    10762109
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
The Role of Uterine Glycogen in Establishing a Successful Pregnancy
子宫糖原在成功怀孕中的作用
  • 批准号:
    10725894
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
Awareness with Paralysis and Post-Traumatic Stress Disorder among Mechanically Ventilated Emergency Department Survivors: The ED-AWARENESS-2 Study
机械通气急诊科幸存者对瘫痪和创伤后应激障碍的认识:ED-AWARENESS-2 研究
  • 批准号:
    10583909
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
Validation of the joint-homing and drug delivery attributes of novel peptides in a mouse arthritis model
在小鼠关节炎模型中验证新型肽的关节归巢和药物递送特性
  • 批准号:
    10589192
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
Maternal dietary intake of omega 3 fatty acids and birth defects
母亲膳食中欧米伽 3 脂肪酸的摄入量与出生缺陷
  • 批准号:
    10575495
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
Drug repurposing for Alzheimer’s disease-related inflammation caused by a TBI
药物再利用,治疗 TBI 引起的阿尔茨海默病相关炎症
  • 批准号:
    10590132
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
Prognostic implications of mitochondrial inheritance in myelodysplastic syndromes after stem-cell transplantation
干细胞移植后骨髓增生异常综合征线粒体遗传的预后意义
  • 批准号:
    10662946
  • 财政年份:
    2023
  • 资助金额:
    $ 10.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了