Planes of Change: New Statistical Methods for Complex Non-Standard Systems
变化平面:复杂非标准系统的新统计方法
基本信息
- 批准号:1712962
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop new statistical methodologies for analysis of systems in a variety of fields, such as personalized medicine, internet traffic, and economics, in which sharp threshold effects occur. Such sharp effects are typically experienced when a system is subjected to a sudden shock (e.g., the effect of political tension on stock prices, the effect of socio-political upheaval on social-media networks, or the effect of a medical intervention on disease progression). Such sharp changes are of critical interest to practitioners in these different fields as they typically have important implications for future decision-making. Statisticians model such sharp changes in time, for example, through what are called "change-points;" when the sharp change happens due to the effect of multiple variables simultaneously, such regions are described in terms of "change-planes." This project aims to develop novel methods of identifying such change-points or change-planes in problems where massive amounts of data -- which have now become the norm given advances in storage capabilities as well as collection mechanisms -- are available, and furthermore, the number of variables on which data are recorded is also very large. The performance of such methods will be carefully analyzed using mathematical theory as well as computer-generated simulations, and the methods will also be validated on real data coming from a variety of sources. It is anticipated that the results of the research will have impact in a variety of natural science as well as social science disciplines. The overarching theme of this project is to develop methodology and inference in a class of problems in which thresholds or boundaries (in one or multiple dimensions) that induce discontinuities arise naturally, either in the statistical model or in the estimation paradigm. The problems are studied both in the setting of massive amounts of data as well as in scenarios where the number of covariates can exceed the number of observations. The boundaries considered in one-dimension are change-points, while those in multiple dimensions are hyper-planes. The studied problems present two different kinds of complexities: (a) massive amounts of available data, and/or (b) large numbers of covariates relative to number of observations. In particular: (i) A number of ideas are developed for sampling intelligently from (retrospectively observed) long time-series to determine the locations of multiple change-points via procedures that require analyzing only a vanishing fraction of the entire series (thereby providing computational benefits), yet produce estimates that match, in precision, the standard estimates that would have been obtained analyzing the entire series. This idea is extended to regression/likelihood based models with covariates in multiple dimensions where the parameters of the regression or the likelihood are different on either side of a hyper-plane in covariate space. (ii) Problems involving hyper-planes, either in the structure of the model or in the criterion function to be optimized, with high-dimensional covariates are studied and new variable selection and estimation methods are investigated. The problems under consideration here are important from the perspective of applications but difficult because the high-dimensional paradigm has to be extended to intrinsically discontinuous settings, outside the (almost) square-root-n rate. Effective solutions to these problems will advance statistical methodology for these important classes of systems.
该项目旨在开发新的统计方法,用于分析各种领域的系统,如个性化医疗、互联网流量和经济学,这些领域会出现尖锐的阈值效应。当一个系统遭受突然冲击时,通常会经历这种剧烈影响(例如,政治紧张对股票价格的影响,社会政治动荡对社交媒体网络的影响,或医疗干预对疾病进展的影响)。这些急剧的变化对这些不同领域的从业者至关重要,因为它们通常对未来的决策有重要的影响。例如,统计学家通过所谓的“变化点”来模拟这种时间上的急剧变化;当由于多个变量同时影响而发生急剧变化时,这些区域用“变化平面”来描述。该项目旨在开发新的方法来识别问题中的这些变化点或变化面,其中大量数据现已成为可用的标准,因为存储能力和收集机制的进步,此外,记录数据的变量数量也非常大。这些方法的性能将使用数学理论和计算机生成的模拟进行仔细分析,并且这些方法也将在来自各种来源的真实数据上进行验证。预计该研究结果将对自然科学和社会科学领域产生影响。这个项目的首要主题是在一类问题中开发方法和推理,在这些问题中,阈值或边界(在一个或多个维度中)会在统计模型或估计范式中自然产生不连续。这些问题既可以在大量数据的情况下进行研究,也可以在协变量数量超过观测值数量的情况下进行研究。一维中考虑的边界是变化点,而多维中考虑的边界是超平面。所研究的问题呈现出两种不同类型的复杂性:(a)大量可用数据,和/或(b)相对于观测数量的大量协变量。特别是:(i)开发了许多想法,用于从(回顾性观察)长时间序列中进行智能采样,以通过只需要分析整个序列的消失部分(从而提供计算效益)的程序确定多个变化点的位置,但产生的估计在精度上与分析整个序列所获得的标准估计相匹配。这个想法被扩展到多维的基于协变量的回归/似然模型,其中回归或似然的参数在协变量空间的超平面的两侧是不同的。(ii)研究了模型结构或待优化准则函数中涉及高维协变量的超平面问题,并研究了新的变量选择和估计方法。从应用的角度来看,这里考虑的问题很重要,但很难,因为高维范式必须扩展到本质上不连续的设置,超出(几乎)平方根n率。对这些问题的有效解决将推进这些重要系统类别的统计方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circumventing superefficiency: An effective strategy for distributed computing in non-standard problems
规避超效率:非标准问题分布式计算的有效策略
- DOI:10.1214/19-ejs1559
- 发表时间:2019
- 期刊:
- 影响因子:1.1
- 作者:Banerjee, Moulinath;Durot, Cécile
- 通讯作者:Durot, Cécile
Drawing inferences for high-dimensional linear models: A selection-assisted partial regression and smoothing approach
- DOI:10.1111/biom.13013
- 发表时间:2019-06-01
- 期刊:
- 影响因子:1.9
- 作者:Fei, Zhe;Zhu, Ji;Li, Yi
- 通讯作者:Li, Yi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moulinath Banerjee其他文献
Changes in arterial stiffness but not carotid intimal thickness in acromegaly.
肢端肥大症患者的动脉硬度发生变化,但颈动脉内膜厚度没有变化。
- DOI:
10.1210/jc.2010-2225 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Angela N Paisley;Moulinath Banerjee;M. Rezai;R. E. Schofield;S. Balakrishnannair;Annie Herbert;Jeremy A L Lawrance;Peter J Trainer;J. Cruickshank - 通讯作者:
J. Cruickshank
Influence of the glucose tolerance test on pro-atherogenic modification of LDL and its relation to paraoxonase activity
- DOI:
10.1016/j.atherosclerosis.2011.07.086 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:
- 作者:
Handrean Soran;Valentine Charlton-Menys;Nahla Younis;Michael France;Moulinath Banerjee;Kennedy Cruickshank;Paul Durrington - 通讯作者:
Paul Durrington
Glycaemic management during the inpatient enteral feeding of people with stroke and diabetes
中风和糖尿病患者住院肠内喂养期间的血糖管理
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.5
- 作者:
A. W. Roberts;S. Penfold;B. Allan;K. Dhatariya;D. Flanagan;M. Hammersley;R. Hillson;J. James;J. McKnight;R. Malik;G. Rayman;Kate Richie;M. Sampson;M. Savage;A. Scott;D. Stanisstreet;L. Stuart;John Thow;E. Walden;C. Walton;P. Winocour;S. Ashton‐Cleary;Moulinath Banerjee;Hannah Berkeley;Caroline Brooks;D. Bruce;L. Dinning;Beverley Eaglesfield;S. Gregory;T. Hughes;P. Kar;Samson O Oyibo;Siân Rilstone;N. Robinson;A. Sinclair;D. Voigt;L. Wessels;Joy Williams - 通讯作者:
Joy Williams
Estimating Fréchet bounds for validating programmatic weak supervision
估计 Fréchet 界限以验证程序性弱监督
- DOI:
10.48550/arxiv.2312.04601 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Felipe Maia Polo;M. Yurochkin;Moulinath Banerjee;Subha Maity;Yuekai Sun - 通讯作者:
Yuekai Sun
Asymptotics for <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" display="inline" overflow="scroll" class="math"><mi>p</mi></math>-value based threshold estimation under repeated measurements
- DOI:
10.1016/j.jspi.2016.01.009 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Atul Mallik;Bodhisattva Sen;Moulinath Banerjee;George Michailidis - 通讯作者:
George Michailidis
Moulinath Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moulinath Banerjee', 18)}}的其他基金
Nonregular asymptotics under dependence and inference on change points in graphical networks
图网络中变化点的依赖和推理下的非正则渐近
- 批准号:
1308890 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
A Study of Boundary Phenomena in a Class of Parametric and Nonparametric Problems
一类参数与非参数问题的边界现象研究
- 批准号:
1007751 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Function estimation under shape constraints and detection of thresholds in nonparametric and semiparametric problems
形状约束下的函数估计以及非参数和半参数问题中的阈值检测
- 批准号:
0705288 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Likelihood ratio inference in nonparametric monotone function estimation problems
非参数单调函数估计问题中的似然比推断
- 批准号:
0306235 - 财政年份:2003
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Undergraduate Biology Education and Research - A New Vision for Change: Re-imagining Biology Education through Social Justice
本科生物教育与研究 - 变革的新愿景:通过社会正义重新构想生物教育
- 批准号:
2311961 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Development of new soybean ecotype adapting climate change.
适应气候变化的大豆新生态型开发。
- 批准号:
23K05168 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Approach to Disaster Resilience and Climate Change Education
抗灾和气候变化教育的新方法
- 批准号:
23K12767 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A New Strategy for Switchable Magnetic Interactions Trigered by Structure Change due to External Stimuli
外部刺激引起的结构变化触发可切换磁相互作用的新策略
- 批准号:
23KJ0970 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Health system resilience to climate change: How to Strenghten Public Health Preparedness and Emergency Response to Extreme Weather Events in New Brusnwick ?
卫生系统对气候变化的抵御能力:如何加强新布鲁斯威克极端天气事件的公共卫生准备和应急响应?
- 批准号:
485343 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Operating Grants
Constructing pedagogical theories and approaches for the new relationships between children and nature: Early childhood education in an Era of Climate Change
构建儿童与自然新关系的教学理论和方法:气候变化时代的幼儿教育
- 批准号:
23KK0042 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
A Climate of Hope: Investigating learning at an innovative exhibit towards new knowledge, theory, and practice of climate change learning with diverse audiences
希望的气候:在创新展览中调查学习情况,向不同观众学习气候变化的新知识、理论和实践
- 批准号:
2314238 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Process change of drug addicts to seek medical care and development of a new group intervention method
吸毒人员就医流程的转变及新型群体干预方法的发展
- 批准号:
23K12916 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MCA: Ontogenetic constraints to climate change resilience – Investigating consequences of heteroblasty under increasing aridity in New Zealand forests
MCA:气候变化恢复力的个体发育限制 — 调查新西兰森林日益干旱的情况下异质发育的后果
- 批准号:
2218916 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CE324: Farming for carbon: developing new age models and monitoring methods to mitigate climate change
CE324:碳农业:开发新时代模型和监测方法以缓解气候变化
- 批准号:
2744825 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Studentship














{{item.name}}会员




