Verification of Properties of Geometric Structures and Reconstruction of Geometric Objectsfrom Partial Information
几何结构性质的验证和从部分信息重建几何对象
基本信息
- 批准号:0310589
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0310589Karen Daniels, Daniel Klain, Koonstantin RybnikovThis is a CARGO incubation award made under solicitation http://www.nsf.gov/pubs/2002/nsf02155/nsf02155.htm.The investigators will develop new techniques and algorithms for solving a collection of problems that address the verification and reconstruction of geometric objects from partial information. The approach is to have two stages: first, verify if the partial information is consistent with the desired outcome. Second, if the answer is positive, reconstruct the object. If the answer is negative, find an approximation to the desired reconstruction. The group will focus on four major types of problems. The first type is a general class of NP-hard containment, covering and packing problems. Although complete information about the objects may be available, partial information will be used due to the hardness of the problems. In addition to strengthening existing algorithms for polygonal shapes, this work will design the first containment and covering algorithms using objects bounded by spline curves. For the other three problems only partial information about the objects is available. The second problem is the verification of convexity and reconstruction of convex polyhedra and convex smooth shapes from partial data. Reconstruction of convex polytopes from partial data is a fascinating classical problem going back to Maxwell, Steinitz, and Minkowski. While much work has been done on recognition and reconstruction of convex polyhedra from projections, reconstruction of smooth convex shapes with a given discrete set of parameters is a problem that has not been adequately addressed. Our work will emphasize reconstruction of convex smooth bodies using splines. The third problem is that of statistical determination of topological properties of a body, such as the Euler characteristic, from a finite set of sample points. The fourth problem, tightly related to the third one, is the determination of the topology of a non-convex body from its projections on a finite number of planes. Dissection and subsequent use of valuations, i.e. finitely additive probability measures, will play an especially important role in the third and fourth problems. The team of mathematics and computer science investigators will combine computational geometry techniques, mathematical programming approaches, methods of graph theory and discrete geometry, methods of convexity theory, and work on multivariate splines to design verification and reconstruction algorithms. In addition to their significance in the context of pure mathematics and theoretical computer science, these problems are important to applications of computational geometry and geometric software design. For example, verification of metric and topological properties of geometric software outputs is important for implementing and testing geometric algorithms. Containment algorithms are useful in 2D packing and layout for manufacturing. Containment for 3D shapes is applicable to modeling tasks such as molecular docking and to medical treatment planning. Covering problems arise in practical settings such as military sensor coverage and targeting, telecommunications, spatial query optimization, and graphics. Work involving splines is applicable to CAD and design of numerical methods. Determination of the topology of a body from finite samplings, projections, and sections is a hard problem important for computer tomography and pattern recognition.
DMS-0310589凯伦丹尼尔斯,丹尼尔克莱恩,库斯坦廷雷布尼科夫这是一个货物孵化奖下征求http://www.nsf.gov/pubs/2002/nsf02155/nsf02155.htm.The调查人员将开发新的技术和算法,解决一系列问题,解决验证和重建几何对象的部分信息。 该方法分为两个阶段:首先,验证部分信息是否与预期结果一致。第二,如果答案是肯定的,重建对象。 如果答案是否定的,则找到所需重建的近似值。 该小组将集中讨论四类主要问题。 第一类是一般的NP-难包容、覆盖和填充问题。 虽然关于对象的完整信息可能是可用的,但由于问题的难度,将使用部分信息。 除了加强现有的多边形形状的算法,这项工作将设计的第一个包含和覆盖算法使用对象的样条曲线。对于其他三个问题,只有部分信息的对象是可用的。 第二个问题是凸多面体和凸光滑形状的凸性验证和重构。 从部分数据重建凸多面体是一个迷人的经典问题,可以追溯到麦克斯韦,斯坦尼茨和闵可夫斯基。虽然已经做了大量的工作,从投影的凸多面体的识别和重建,重建光滑的凸形状与一个给定的离散参数集是一个问题,尚未得到充分解决。我们的工作将着重于用样条重构凸光滑体。 第三个问题是从有限的样本点集统计确定物体的拓扑性质,如欧拉特征线。 第四个问题与第三个问题密切相关,它是由非凸体在有限个平面上的投影确定非凸体的拓扑。 在第三和第四个问题中,对估值的剖析和随后的使用,即可加性概率测度,将发挥特别重要的作用。 数学和计算机科学研究人员团队将结合联合收割机计算几何技术,数学编程方法,图论和离散几何方法,凸性理论方法,以及多元样条设计验证和重建算法。除了它们在纯数学和理论计算机科学中的意义外,这些问题对计算几何和几何软件设计的应用也很重要。例如,几何软件输出的度量和拓扑性质的验证对于实现和测试几何算法是重要的。 包容算法在用于制造的2D包装和布局中是有用的。 3D形状的包容性适用于建模任务,如分子对接和医疗计划。覆盖问题出现在实际环境中,如军事传感器覆盖和定位,电信,空间查询优化和图形。涉及样条的工作适用于计算机辅助设计和数值方法的设计。 从有限采样、投影和截面确定物体的拓扑结构是计算机层析成像和模式识别中的一个重要难题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Daniels其他文献
Stress during the waiting period: A review of pretransplantation fears
等待期间的压力:移植前恐惧的回顾
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:1.4
- 作者:
R. R. Porter;C. Bailey;G. Bennett;Alison T. Catalfamo;Karen Daniels;J. Ehle;S. Gibbs;L. Krout;Elisa S. Liters - 通讯作者:
Elisa S. Liters
Understanding the political economy of reforming global health initiatives – insights from global and country levels
- DOI:
10.1186/s12992-025-01129-0 - 发表时间:
2025-07-09 - 期刊:
- 影响因子:4.500
- 作者:
Sophie Witter;Natasha Palmer;Rosemary Jouhaud;Shehla Zaidi;Severine Carillon;Rene English;Giulia Loffreda;Emilie Venables;Shifa Salman Habib;Jeff Tan;Fatouma Hane;Maria Paola Bertone;Seyed-Moeen Hosseinalipour;Valery Ridde;Asad Shoaib;Adama Faye;Lilian Dudley;Karen Daniels;Karl Blanchet - 通讯作者:
Karl Blanchet
Movement, meaning and affect: the stuff childhood literacies are made of
动作、意义和情感:童年识字的组成部分
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Karen Daniels - 通讯作者:
Karen Daniels
Combatir la fatiga por alarmas en las unidades de traumatología
- DOI:
10.1016/j.nursi.2015.06.019 - 发表时间:
2015-05-01 - 期刊:
- 影响因子:
- 作者:
Karen Daniels - 通讯作者:
Karen Daniels
Options for Screening for Colorectal Cancer in the Royal Air Force: A Cost-effectiveness Evaluation
皇家空军结直肠癌筛查的选择:成本效益评估
- DOI:
10.1136/jramc-141-03-04 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Karen Daniels;Martin McKee - 通讯作者:
Martin McKee
Karen Daniels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Daniels', 18)}}的其他基金
Collaborative Research: RUI: Density of Modes: A New Way to Forecast Sediment Failure
合作研究:RUI:模式密度:预测沉积物破坏的新方法
- 批准号:
2244615 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Iterative Design and Fabrication of Hyperuniform-Inspired Materials for Targeted Mechanical and Transport Properties
DMREF/合作研究:针对目标机械和传输性能的超均匀材料的迭代设计和制造
- 批准号:
2323341 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Mechanics of Granular Materials: Rigidity, Nonlocality, and Activated Failure
颗粒材料力学:刚性、非局域性和激活失效
- 批准号:
2104986 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Travel Support for International Focus Workshop: Granular and Particulate Networks
国际焦点研讨会的差旅支持:细粒度和微粒网络
- 批准号:
1931158 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
PREEVENTS Track 2: Collaborative Research: Defining precursors of ground failure: a multiscale framework for early landslide prediction through geomechanics and remote sensing
预防事件轨道 2:协作研究:定义地面破坏的前兆:通过地质力学和遥感进行早期滑坡预测的多尺度框架
- 批准号:
1854977 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Wetting and Spreading with Soft Materials
用软材料润湿和铺展
- 批准号:
1608097 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
2012 Granular and Granular-Fluid Flow GRC to be held July 22 - 27, 2012 at Davidson College in Davidson, NC
2012 年粒状和粒状流体流动 GRC 将于 2012 年 7 月 22 日至 27 日在北卡罗来纳州戴维森的戴维森学院举行
- 批准号:
1239081 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Workshop Support for "Particulate Matter: Does Dimensionality Matter?"; Max Planck Institute for the Physics of Complex Systems; Dresden, Germany
研讨会支持“颗粒物质:维度重要吗?”;
- 批准号:
1019151 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: State Variables in Granular Materials
职业:颗粒材料的状态变量
- 批准号:
0644743 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似海外基金
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
- 批准号:
23K17661 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
- 批准号:
2891032 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Studentship
Complex Geometric Properties of Period Maps
周期图的复杂几何性质
- 批准号:
2304981 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Geometric properties of the mapping class group
映射类组的几何属性
- 批准号:
546076-2020 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Postdoctoral Fellowships
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
- 批准号:
RGPIN-2020-04683 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
- 批准号:
RGPIN-2020-04683 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Discovery Grants Program - Individual
Geometric properties of the mapping class group
映射类组的几何属性
- 批准号:
546076-2020 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Postdoctoral Fellowships
Combinatorial, geometric and probabilistic properties of groups
群的组合、几何和概率属性
- 批准号:
2611134 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Studentship
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Symbolic Powers and Lefschetz Properties: Geometric and Homological Aspects
符号幂和 Lefschetz 性质:几何和同调方面
- 批准号:
2101225 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant