Combinatorial, geometric and probabilistic properties of groups
群的组合、几何和概率属性
基本信息
- 批准号:2611134
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The notion of a finitely generated group is at heart an algebraic one. However, in certain situations it turns out to be fruitful to view such a group from a geometric perspective, as is often the case in the field of geometric group theory, or from a combinatorial perspective, as in the field of arithmetic combinatorics. Studying probabilistic processes on groups can also be a rich source of problems and results in discrete probability. Recently, several exciting links between these different perspectives have emerged, leading to a number of breakthroughs and some beautiful results. The overriding theme of this research is to develop, add to, and further exploit these links.A classical way of viewing a finitely generated group geometrically is to view it as a graph. If G is a group with a finite symmetric generating set S then the Cayley graph C(G,S) is the graph whose vertex set is the set of elements of G, with x and y connected by an edge if and only if there exists s E S such that x = ys. A famous theorem of Gromov shows that a certain asymptotic geometric property of this graph (polynomial growth) is equivalent to a rather strong algebraic condition on the group G (virtual nilpotence).One can also use Cayley graphs to define various probabilistic processes on a group G, such as random walks, which have various physical interpretations, for example in the context of electric networks. Percolation on G, on the other hand, is where each edge of C(G,S) is either deleted or retained at random according to some probability distribution, and then the resulting random graph is studied. This can be interpreted in the context of the flow of water through a porous stone, or the spread of a virus. The rate of polynomial growth of a group turns out to be intimately connected to the behaviours of both random walks and percolation.A particular example of how powerful the combinatorial perspective on groups can be is provided by objects called approximate subgroups. These are subsets of a group that are 'approximately closed' under the group operation in a certain sense. There has been considerable progress in the study of approximate subgroups over the last 15 years, and this has led to a number of remarkable applications, for example to fields as diverse as number theory, random matrix theory and theoretical computer science.Approximate groups can also be thought of as a 'local' version of polynomial growth, and indeed a seminal result of Breuillard, Green and Tao about approximate groups can be used to show that polynomial growth on a given region of a group is enough to imply virtual nilpotence. This result has been developed by Tessera and Tointon, using 'local' versions of various group-theoretic properties, and applied to describe in detail certain fine-scale behaviours of random walks on groups, verifying and generalising two long-standing conjectures of Benjamini and Kozma. Hutchcroft and Tointon have also deployed this and additional 'local' group-theoretic notions (such as the notion of taking a quotient of an abelian group by a subset, rather than a subgroup) to analyse percolation on finite groups, verifying most cases of a famous conjecture of Benjamini.This project will, amongst other things, seek to develop this 'local' perspective on group theory, in an effort to prove further finitary and quantitative results in a similar direction. It falls between the Algebra; Geometry & Topology; and Logic & Combinatorics EPSRC research areas.
群生成群的概念本质上是一个代数群。然而,在某些情况下,从几何的角度来看这样一个群是富有成效的,就像在几何群论领域中经常发生的那样,或者从组合的角度来看,就像在算术组合学领域中一样。研究群上的概率过程也可以是问题的丰富来源,并导致离散概率。最近,这些不同观点之间出现了一些令人兴奋的联系,导致了一些突破和一些美丽的结果。本研究的主要目的是发展、增加和进一步利用这些联系。从几何学上观察一个由群生成的群的经典方法是将它看作一个图。如果G是具有有限对称生成集S的群,则Cayley图C(G,S)是其顶点集是G的元素集的图,其中x和y通过边连通当且仅当存在s E S使得x = ys。格罗莫夫的一个著名定理表明,这个图的某种渐近几何性质(多项式增长)等价于群G上的一个相当强的代数条件(虚拟零值)。人们也可以使用凯莱图来定义群G上的各种概率过程,例如随机游动,它们有各种物理解释,例如在电网络的背景下。另一方面,G上的渗流是C(G,S)的每条边根据某种概率分布随机删除或保留,然后研究所得到的随机图。这可以解释为水通过多孔石头的流动,或者病毒的传播。一个群的多项式增长率与随机游动和随机化的行为密切相关。一个关于群的组合观点有多强大的特别例子是被称为近似子群的对象。这些是在某种意义上在群运算下“近似封闭”的群的子集。在过去的15年里,近似子群的研究取得了相当大的进展,这导致了许多显着的应用,例如数论,随机矩阵理论和理论计算机科学等领域。近似群也可以被认为是多项式增长的“局部”版本,实际上是Breuillard的开创性成果,绿色和陶关于近似群可以用来表明,多项式增长的一个给定的区域的一个群体是足以暗示虚拟niliraries。这一结果是由Tessera和Tointon开发的,使用各种群论性质的“局部”版本,并应用于详细描述群上随机游动的某些精细尺度行为,验证和推广了Benjamini和Kozma的两个长期存在的理论。Hutchcroft和Tointon也运用了这个和其他的“局部”群论概念(例如将阿贝尔群的商取为子集而不是子群的概念)来分析有限群上的渗流,验证Benjamini的一个著名猜想的大多数情况。这个项目将,除其他外,寻求发展这种对群论的“局部”观点,以证明类似方向上的进一步有限性和定量结果。它福尔斯代数之间;几何与拓扑;和逻辑与组合学EPSRC研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
- 批准号:11071206
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
- 批准号:10771181
- 批准年份:2007
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
- 批准号:
2237138 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
- 批准号:
2246484 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133822 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133861 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
RGPIN-2022-02961 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
- 批准号:
DGECR-2022-00431 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133806 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena
高维现象的分析、几何和概率方面
- 批准号:
1955175 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Topological, geometric and probabilistic aspects of dynamical systems (renewal proposal)
动力系统的拓扑、几何和概率方面(更新提案)
- 批准号:
407739711 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Heisenberg Grants