Accuracy and Stability of Computational Representations of Swept Volume Operations
扫描体运算计算表示的准确性和稳定性
基本信息
- 批准号:0310619
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A rigorous, effectively computable theory for the analysis of swept volumes (the set occupied by objects moving in space) is developed in this project. The work involves mathematical and computing sciences in the specialty of computational topology. The goals are to make fundamental contributions to the automated computation and representation of swept volume operations, and explore generalizations and applications to timely problems in engineering and science. This will lead to new approaches and insights that advance the state-of-the-art in computer aided geometric design and related fields. Traditional methods will be integrated with advanced mathematical techniques to achieve the goals, which encompass the following tasks: (1) Develop algorithms for smoother representation of swept volumes that include effectively computable characterizations of accuracy and stability, and extend these results to more general objects. (2) Create new methods for computing and representing Boolean operations for swept volumes that are real-time executable, and include accuracy and stability algorithms. (3) Compare the new algorithms with current solid geometry methods, and develop efficient ways to interface these approaches with existing software. (4) Investigate applications to emerging problems in such areas as tissue engineering and virtual sculpting. Swept volumes have important applications in design, manufacturing and the health sciences. A basic question concerning the representation of swept volumes and other objects is, how can one insure that computer based representations are accurate, especially when the data contains errors, and when different methods are used to render the object? This question, which concerns the shape of computer-generated objects, provides the motivation for and the main focus of the project. In some cases there are readily computable quantities characterizing shape that can be included in programs for representing objects. Such quantities, especially as they apply to swept volumes, are to be studied in depth, along with methods for obtaining smoother representations of geometric objects. Applications of the approaches developed to tissue engineering and virtual design and manufacturing will be investigated, and additional applications in the computing sciences are anticipated. Findings from the project will be used to create innovative programs for computer aided design, and engineering applications, and will be disseminated via publications, lectures, the Web, existing and new undergraduate and graduate courses, new programs in computational topology, and interactions with scientific and engineering collaborators.
一个严格的,有效的可计算的理论分析扫描体积(一套所占的物体在空间中移动)是在这个项目中开发。 工作涉及 数学和计算科学的计算拓扑学专业。我们的目标是为扫描体操作的自动计算和表示做出根本性的贡献,并探索工程和科学中及时问题的推广和应用。这将导致新的方法和见解,推进国家的最先进的计算机辅助几何设计和相关领域。传统方法将与先进的数学技术相结合,以实现目标,其中包括以下任务:(1)开发算法,更平滑的表示扫掠体,包括有效的计算表征的准确性和稳定性,并将这些结果扩展到更一般的对象。(2)创建用于计算和表示扫描体积的布尔运算的新方法,这些方法是实时可执行的,并且包括精度和稳定性算法。(3)比较新的算法与当前的立体几何方法,并开发有效的方法来接口这些方法与现有的软件。(4)研究组织工程和虚拟造型等领域中出现的问题的应用。扫描体积在设计、制造和健康科学中具有重要的应用。关于扫描体和其他对象的表示的一个基本问题是,如何确保基于计算机的表示是准确的,特别是当数据包含错误以及使用不同的方法来渲染对象时?这个问题,涉及计算机生成的对象的形状,提供了该项目的动机和主要焦点。在某些情况下,有容易计算的数量表征形状,可以包括在程序中表示对象。这些量,特别是当它们应用于扫描体积时,将被深入研究,沿着获得几何对象的更平滑表示的方法。将研究开发的方法在组织工程和虚拟设计和制造中的应用,并预计在计算科学中的其他应用。该项目的研究结果将用于创建计算机辅助设计和工程应用的创新程序,并将通过出版物,讲座,网络,现有和新的本科生和研究生课程,计算拓扑学的新课程以及与科学和工程合作者的互动进行传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denis Blackmore其他文献
Non-associative structures of commutative algebras related with quadratic Poisson brackets
- DOI:
10.1007/s40879-020-00398-w - 发表时间:
2020-02-03 - 期刊:
- 影响因子:0.500
- 作者:
Orest D. Artemovych;Denis Blackmore;Anatolij K. Prykarpatski - 通讯作者:
Anatolij K. Prykarpatski
The augmented unified localizable crisis scale
- DOI:
10.1016/j.techfore.2015.06.017 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:
- 作者:
Eli Rohn;Denis Blackmore - 通讯作者:
Denis Blackmore
Denis Blackmore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Denis Blackmore', 18)}}的其他基金
Collaborative Research: A Unified Dynamical Systems-Simulation-Visualization Approach to Modeling and Analyzing Granular Flow Phenomena
协作研究:用于建模和分析颗粒流现象的统一动力系统-仿真-可视化方法
- 批准号:
1029809 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Sweep Differential Equations to Automated Manufacturing
数学科学:扫描微分方程在自动化制造中的应用
- 批准号:
9500808 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Computational Modeling of Stability in Locomotion and the Effects of Vestibular Loss
运动稳定性和前庭损失影响的计算模型
- 批准号:
10387242 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Computational and experimental assessment of pelvic stability and optimization of technology to guide reconstruction
骨盆稳定性的计算和实验评估以及指导重建的技术优化
- 批准号:
RGPIN-2022-04993 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Computational Modeling of Stability in Locomotion and the Effects of Vestibular Loss
运动稳定性和前庭损失影响的计算模型
- 批准号:
10549732 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Computational Stability Analysis to Predict Heart Failure after Myocardial Infarction
预测心肌梗死后心力衰竭的计算稳定性分析
- 批准号:
10525749 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Computational Stability Analysis to Predict Heart Failure after Myocardial Infarction
预测心肌梗死后心力衰竭的计算稳定性分析
- 批准号:
10669258 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Designing computational tools which can improve protein stability and increase protein binding affinity
设计可以提高蛋白质稳定性和增加蛋白质结合亲和力的计算工具
- 批准号:
518634-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Designing computational tools which can improve protein stability and increase protein binding affinity
设计可以提高蛋白质稳定性和增加蛋白质结合亲和力的计算工具
- 批准号:
518634-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
- 批准号:
RGPIN-2014-05560 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Designing computational tools which can improve protein stability and increase protein binding affinity
设计可以提高蛋白质稳定性和增加蛋白质结合亲和力的计算工具
- 批准号:
518634-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
- 批准号:
RGPIN-2014-05560 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual