Theoretical Studies of Non-Crystalline Solids

非晶固体的理论研究

基本信息

  • 批准号:
    0310933
  • 负责人:
  • 金额:
    $ 24.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

New methods are developed to reliably model complex and technologically important glasses and amorphous materials. The focus is on structural modeling, atomic diffusion in the materials, and electronic properties including hopping and transport in non-crystalline environments. This work impacts a broad and important range of materials with applications ranging from computer memories (solid glassy chalcogenide-silver electrolytes), digital x-ray radiography (amorphous chalcogenides) to solar photovoltaics (amorphous silicon hydride). This award addresses fundamental questions concerning structure, diffusive atomic dynamics, and electron states and their dynamics in non-crystalline semiconductors. Among these issues are: methods for creating new structural models for complex glasses, and thorough analysis of these models (the nature of topological and chemical ordering, electronic and dynamical properties). Using novel techniques, we will determine non-diffusive dynamics in these glasses (this is an important area with many phenomenological models of the diffusive dynamics, but few atomistic calculations with "realistic" interatomic interactions). The techniques for modeling diffusive dynamics are quite new, and expected to develop from the experience obtained from the complex materials studied in this grant (in a general way, such methods are relevant to problems in biophysics like protein folding and dynamics in polymers). Finally, the work on electron dynamics will give new insight into hopping-based carrier transport in glasses, and other disordered materials. Also we will explore the phenomenon of thermally driven electron hopping by direct simulation: this will add important new insights to the finite-temperature Anderson problem.The research conducted here will be incorporated into courses taught by the PI and students, including those from underrepresented groups, will participate in the research. Results of the research, atomic coordinates in particular, will be available through the internet. There are also links to a small, startup company, Axon Technologies, in Tempe, AZ. %%%New methods are developed to reliably model complex and technologically important glasses and amorphous materials. The focus is on structural modeling, atomic diffusion in the materials, and electronic properties including hopping and transport in non-crystalline environments. This work impacts a broad and important range of materials with applications ranging from computer memories (solid glassy chalcogenide-silver electrolytes), digital x-ray radiography (amorphous chalcogenides) to solar photovoltaics (amorphous silicon hydride). The research conducted here will be incorporated into courses taught by the PI and students, including those from underrepresented groups, will participate in the research. Results of the research, atomic coordinates in particular, will be available through the internet. There are also links to a small, startup company, Axon Technologies, in Tempe, AZ. ***
人们开发了新方法来可靠地模拟复杂且技术上重要的玻璃和非晶材料。 重点是结构建模、材料中的原子扩散以及电子特性,包括非晶体环境中的跳跃和传输。 这项工作影响了广泛而重要的材料,其应用范围从计算机存储器(固体玻璃状硫族化物银电解质)、数字 X 射线照相(非晶硫族化物)到太阳能光伏(非晶氢化硅)。 该奖项解决了有关非晶半导体中的结构、扩散原子动力学、电子态及其动力学的基本问题。 这些问题包括:为复杂玻璃创建新结构模型的方法,以及对这些模型的彻底分析(拓扑和化学排序的性质、电子和动力学特性)。 使用新技术,我们将确定这些玻璃中的非扩散动力学(这是一个重要领域,有许多扩散动力学唯象模型,但很少有具有“现实”原子间相互作用的原子计算)。 扩散动力学建模技术是相当新的,预计将根据本次资助中研究的复杂材料所获得的经验来发展(一般来说,此类方法与蛋白质折叠和聚合物动力学等生物物理学问题相关)。 最后,电子动力学方面的工作将为玻璃和其他无序材料中基于跳跃的载流子传输提供新的见解。 此外,我们还将通过直接模拟探索热驱动电子跳跃现象:这将为有限温度安德森问题增添重要的新见解。这里进行的研究将纳入PI教授的课程中,学生(包括来自代表性不足群体的学生)将参与该研究。 研究结果,特别是原子坐标,将通过互联网提供。 还有位于亚利桑那州坦佩的一家小型初创公司 Axon Technologies 的链接。 %%%开发了新方法来可靠地模拟复杂且技术上重要的玻璃和非晶材料。 重点是结构建模、材料中的原子扩散以及电子特性,包括非晶体环境中的跳跃和传输。 这项工作影响了广泛而重要的材料,其应用范围从计算机存储器(固体玻璃状硫族化物银电解质)、数字 X 射线照相(非晶硫族化物)到太阳能光伏(非晶氢化硅)。 这里进行的研究将纳入 PI 教授的课程中,学生(包括来自代表性不足群体的学生)将参与研究。 研究结果,特别是原子坐标,将通过互联网提供。 还有位于亚利桑那州坦佩的一家小型初创公司 Axon Technologies 的链接。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Drabold其他文献

David Drabold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Drabold', 18)}}的其他基金

Collaborative Research: Joint utilization of experimental and theoretical information: a new paradigm for modeling complex materials
协作研究:实验和理论信息的联合利用:复杂材料建模的新范式
  • 批准号:
    1506836
  • 财政年份:
    2016
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Electronic Processes in Disordered and Biomolecular Systems
合作研究:无序和生物分子系统中的电子过程
  • 批准号:
    0902936
  • 财政年份:
    2009
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Topics in the Dynamics of Disordered Systems
无序系统动力学主题
  • 批准号:
    0600073
  • 财政年份:
    2006
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Theoretical Studies of Glasses
眼镜的理论研究
  • 批准号:
    0081006
  • 财政年份:
    2000
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing grant
Electron States and Transport in Amorphous Semiconductors
非晶半导体中的电子态和输运
  • 批准号:
    9618789
  • 财政年份:
    1997
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing grant
Theory of Tetrahedral Amorphous Carbon
四面体非晶碳理论
  • 批准号:
    9322412
  • 财政年份:
    1994
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant

相似海外基金

RUI: Theoretical Studies of Non-Covalent Interactions and Chemical Bonding Transitions Across Phases in Inorganic Systems, and Investigations of Other Modes of Weak Bonding
RUI:无机体系中非共价相互作用和跨相化学键转变的理论研究,以及其他弱键合模式的研究
  • 批准号:
    2055119
  • 财政年份:
    2021
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Theoretical AMO Studies of Non-Equilibrium and Emergent Many-Body Quantum Physics
非平衡和新兴多体量子物理的理论 AMO 研究
  • 批准号:
    2110250
  • 财政年份:
    2021
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Theoretical Studies of Non-Valence Correlation-Bound and Temporary Anions
非价相关束缚和临时阴离子的理论研究
  • 批准号:
    1762337
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Empirical and Theoretical Studies on Non-performing Loans and Housing Bubbles in Japan, the U.S., and China
日本、美国和中国的不良贷款和房地产泡沫的实证和理论研究
  • 批准号:
    16K03764
  • 财政年份:
    2016
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Studies of Non-Valence Correlation-Bound Anions and of Positron-Molecule Complexes
非价相关束缚阴离子和正电子分子配合物的理论研究
  • 批准号:
    1362334
  • 财政年份:
    2014
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Theoretical studies on correlation effects and non-equilibrium phase transitions for high density particles systems
高密度粒子体系相关效应和非平衡相变的理论研究
  • 批准号:
    21540384
  • 财政年份:
    2009
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Studies in QCD, Electroweak and non Standard Model Physics
QCD、电弱和非标准模型物理的理论研究
  • 批准号:
    0555544
  • 财政年份:
    2006
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Studies of the Non-Linear Transport Properties of Molecular Wires
职业:分子线非线性输运特性的理论研究
  • 批准号:
    0432545
  • 财政年份:
    2004
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Theoretical Studies in QCD, Electroweak and non Standard Model Physics
QCD、电弱和非标准模型物理的理论研究
  • 批准号:
    0244789
  • 财政年份:
    2003
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Studies of the Non-Linear Transport Properties of Molecular Wires
职业:分子线非线性输运特性的理论研究
  • 批准号:
    0133075
  • 财政年份:
    2002
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了