Fibred 3-manifolds and beyond
纤维 3 歧管及以上
基本信息
- 批准号:0312442
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0312442Rachel Roberts Professor Roberts will investigate several problems concerning the topology of 3-manifolds. In particular, she proposes investigating a series of questions suggested by her earlier work (joint with John Shareshian and Melanie Stein) demonstrating the existence of infinitely many hyperbolic manifolds containing no Reebless foliation. She also proposes a study of particular Reebless foliations and essential laminations as part of her proposed approach to proving the truth of the property P conjecture for knots, which says that no counterexample to the Poincar\'e Conjecture can be generated by Dehn surgery on knots. Three-manifolds are spaces formed by gluing together blocks of three-dimensional space according to certain prescribed rules. Globally, the spaces obtained are usually quite complex. These spaces arise naturally in many contexts in the physical and natural sciences and model many interesting phenomena. As an example of this, we note the recent joint research of topologists and cosmologists suggesting a perhaps surprising model for our spatial universe. As another example, the study of 3-manifolds is important in the study of the knotting and linking of strings in three-dimensional space, which in turn is important in the study of the structure of DNA. A primary goal of the study of 3-manifolds is to discover a useful description of all such spaces and to develop useful tools for working with them. In this research, Professor Roberts investigates questions related to this goal.
Roberts教授将研究有关3-流形拓扑的几个问题。特别是,她建议研究她早期的工作(与John Shareshian和Melanie Stein合作)提出的一系列问题,这些问题证明了无限多个不包含无叶理的双曲流形的存在性。她还提出了对特殊的无Reebless叶状和基本层状的研究,作为她提出的证明结的性质P猜想的真实性的方法的一部分,该猜想说,在结上的Dehn手术不能产生庞加莱猜想的反例。三流形是将三维空间的块按照一定的规则粘合在一起形成的空间。总的来说,得到的空间通常是相当复杂的。这些空间在物理和自然科学的许多环境中自然出现,并模拟了许多有趣的现象。作为一个例子,我们注意到最近拓扑学家和宇宙学家的联合研究为我们的空间宇宙提出了一个可能令人惊讶的模型。又如,对3流形的研究对于研究三维空间中弦的打结和连接是很重要的,而这对于研究DNA的结构也是很重要的。研究3流形的一个主要目标是发现所有这些空间的有用描述,并开发有用的工具来处理它们。在这项研究中,罗伯茨教授调查了与这一目标相关的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Roberts其他文献
Australian allied health professionals' perspectives on current practice, benefits, challenges, and opportunities in nature-based approaches
澳大利亚专职医疗专业人员对基于自然的方法在当前实践、益处、挑战和机遇方面的看法
- DOI:
10.1016/j.healthplace.2025.103430 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:4.100
- 作者:
Jessica Stanhope;Kristen Foley;Mary Butler;Jennifer Boddy;Kelly Clanchy;Emma George;Rachel Roberts;Paul Rothmore;Amy Salter;Patricia Serocki;Abirami Thirumanickam;Philip Weinstein - 通讯作者:
Philip Weinstein
How Can Medical Journals Promote Equity and Counter Racism?
- DOI:
10.1007/s11606-021-06984-2 - 发表时间:
2021-08-13 - 期刊:
- 影响因子:4.200
- 作者:
Jeffrey L Jackson;Carol Bates;Steven M. Asch;Rachel Roberts;Jenni R. Clarkson - 通讯作者:
Jenni R. Clarkson
OC 8552 EFFICACY OF THE CHAD63-MVC ME-TRAP VECTORED MALARIA VACCINE CANDIDATE IN 5–17 MONTHS OLD INFANTS AND CHILDREN IN BURKINA FASO
OC 8552 布基纳法索的婴儿和儿童
- DOI:
10.1136/bmjgh-2019-edc.31 - 发表时间:
2019 - 期刊:
- 影响因子:8.1
- 作者:
A. Tiono;I. Nebie’;N. Anagnostou;S. Coulibaly;A. Lawrie;Edith C. Bougouma;A. Ouédraogo;J. B. Yaro;Aissata Barry;Rachel Roberts;Amidou Z. Ouédraogo;K. Ewer;N. Viebig;A. Diarra;O. Leroy;P. Bejon;A. Hill;S. Sirima - 通讯作者:
S. Sirima
Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial
候选疟疾疫苗 R21/Matrix-M 在非洲儿童中的安全性和有效性:多中心、双盲、随机、3 期试验
- DOI:
10.1016/s0140-6736(23)02511-4 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Datoo;A. Dicko;H. Tinto;Jean;M. Hamaluba;A. Olotu;Emma Beaumont;F. R. Lopez;H. M. Natama;Sophie Weston;Mwajuma Chemba;Y. Compaoré;Djibrilla Issiaka;Diallo Salou;A. Somé;Sharon Omenda;A. Lawrie;P. Bejon;Harish Rao;D. Chandramohan;Rachel Roberts;Sandesh M. Bharati;Lisa Stockdale;Sunil Gairola;Brian Greenwood;K. Ewer;J. Bradley;P. Kulkarni;U. Shaligram;Adrian V. S. Hill;A. Mahamar;K. Sanogo;Youssoufa Sidibé;Kalifa Diarra;Mamoudou Samassekou;Oumar Attaher;Amadou Tapily;M. Diallo;O. Dicko;Mahamadou Kaya;S. O. Maguiraga;Yaya Sankaré;Hamadou Yalcouye;Soumaïla Diarra;S. M. Niambele;Ismaila Thera;I. Sagara;Mala Sylla;A. Dolo;Nsajigwa Misidai;Sylvester Simando;H. Msami;O. Juma;Nicolaus Gutapaka;R. Paul;S. Mswata;I. Sasamalo;Kasmir Johaness;Mwantumu Sultan;Annastazia Alexander;Isaac Kimaro;Kauye Lwanga;Mwajuma Mtungwe;Kassim Khamis;Lighton Rugarabam;W. Kalinga;Mohammed Mohammed;Janeth Kamange;Jubilate Msangi;Batuli Mwaijande;I. Mtaka;Matilda Mhapa;Tarsis Mlaganile;Thabit Mbaga;R. Yerbanga;Wendkouni Samtouma;Abdoul;Zachari Kabré;W. Ouedraogo;G. A. B. Yarbanga;I. Zongo;Hamade Savadogo;J. Sanon;Judicael Compaore;Idrissa Kéré;Ferdinand Lionel Yoni;Tewende Martine Sanre;Seydou Bienvenu Ouattara;S. Provstgaard;D. Woods;Robert W. Snow;Nyaguara O. Amek;Caroline J Ngetsa;L. Ochola;J. Musyoki;M. Munene;N. Mumba;Uche J. Adetifa;C. Muiruri;Jimmy Shangala Mwawaka;M. H. Mwaganyuma;Martha Njeri Ndichu;J. Weya;Kelvin Njogu;Jane Grant;J. Webster;Anand Lakhkar;N. F. A. Ido;Ousmane Traoré;M. Tahita;M. D. A. Bonko;T. Rouamba;D. F. Ouédraogo;Rachidatou Soma;Aida Millogo;Edouard Ouedraogo;Faizatou Sorgho;Fabé Konate;I. Valéa - 通讯作者:
I. Valéa
Aortic arch de-branching for suspected expanding perigraft haematoma after previous acute type-A dissection repair with AMDS stent: a technique for a potential future problem
- DOI:
10.1186/s13019-024-02825-5 - 发表时间:
2024-06-21 - 期刊:
- 影响因子:1.500
- 作者:
Rickesh Karsan;Niamh Shearer;Ciara Doyle;Rachel Roberts;Alsir Ahmed - 通讯作者:
Alsir Ahmed
Rachel Roberts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Roberts', 18)}}的其他基金
Collaborative Research: Taut Foliations and Contact Topology
合作研究:张紧的叶状结构和接触拓扑
- 批准号:
1612475 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407631 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
- 批准号:
DP240102350 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
- 批准号:
2343868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
- 批准号:
2347230 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
- 批准号:
2247572 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
- 批准号:
2304841 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant