Collective and Nonlinear Physics of Mesoscopic Oscillators

介观振荡器的集体和非线性物理

基本信息

  • 批准号:
    0314069
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2007-09-30
  • 项目状态:
    已结题

项目摘要

Mechanical oscillations at the sub-micron scale - either fabricated lithographically or built up from the atomic scale as in carbon nanotubes - combine the physics of nonlinearity, noise and dispersion, collective behavior, and ultimately quantum effects, in systems that are both readily investigated experimentally and likely to be important in technology. This project is to study theoretically the nonlinear, nonequilibrium, stochastic, and pattern forming aspects of such oscillators, with strong motivation from the concurrent experimental program at Caltech.Modern lithographic techniques allow the construction of free-standing mechanical oscillators, made from silicon, silicon nitride, gold and other materials, at ever decreasing sizes, and with a wide variety of geometries, from simple beams and cantilevers, to complex multi-oscillator structures that provide isolation from supports. In addition, the fabrication of mechanical oscillators made from single- and multi-walled carbon nanotubes is rapidly developing. These experimental advances open up interesting new avenues of basic physics, which have direct application to possible technological applications of such devices in detectors, communication and other areas.On the one hand the fabrication technologies open up new experimental possibilities, for example the ease of constructing large arrays of oscillators, and the approach to size scales where quantum effects become important. On the other hand, there are new challenges that arise, such as the inevitable dispersion of the oscillator frequencies due to imperfections of the fabrication, the growing importance of stochastic effects from the thermal noise as sizes decrease, and the nonlinearity of the oscillators that will develop at the larger amplitudes of motion that will enhance the signal to noise ratio of detection schemes. These must be understood for the successful development of applications. Thus there is a strong need for a theoretical investigation of such small scale oscillators, combining the issues of nonlinearity, noise and dispersion, collective behavior (pattern formation), and quantum effects. Each of these areas has a large body of theoretical work, of greater or lesser applicability to experiment. The progress in the range of devices that can be fabricated provides strong experimental stimulus for testing, refining and combining these theoretical ideas in a new physical domain. The possibilities of precise measurements of the behavior of large numbers of dynamical components, through on-chip diagnostics and processing, makes mesoscopic oscillators an exciting testbed for these theoretical ideas. In turn the theory may suggest completely new protocols for technological applications, as well as provide new insights on the design of more conventional protocols.Besides being carried out in close coordination with an experimental program at Caltech, the research will involve both graduate students and undergraduate students.%%% Mechanical oscillations at the sub-micron scale - either fabricated lithographically or built up from the atomic scale as in carbon nanotubes - combine the physics of nonlinearity, noise and dispersion, collective behavior, and ultimately quantum effects, in systems that are both readily investigated experimentally and likely to be important in technology. This project is to study theoretically the nonlinear, nonequilibrium, stochastic, and pattern forming aspects of such oscillators, with strong motivation from the concurrent experimental program at Caltech.Besides being carried out in close coordination with an experimental program at Caltech, the research will involve both graduate students and undergraduate students.***
亚微米尺度上的机械振荡——无论是用光刻技术制造的,还是像碳纳米管那样从原子尺度上建立起来的——结合了非线性、噪声和色散、集体行为以及最终的量子效应等物理特性,这些系统既易于实验研究,又可能在技术上很重要。这个项目是在理论上研究这些振荡的非线性、非平衡、随机和模式形成方面,有来自加州理工学院并行实验项目的强烈动机。现代光刻技术允许建造独立的机械振荡器,由硅、氮化硅、金和其他材料制成,尺寸越来越小,具有各种各样的几何形状,从简单的梁和悬臂,到复杂的多振荡器结构,提供与支撑隔离。此外,单壁和多壁碳纳米管机械振荡器的制造也在迅速发展。这些实验进展为基础物理学开辟了有趣的新途径,直接应用于这种装置在探测器、通信和其他领域的可能技术应用。一方面,制造技术开辟了新的实验可能性,例如,构建大型振荡器阵列的便捷性,以及量子效应变得重要的尺寸尺度的方法。另一方面,出现了新的挑战,例如由于制造缺陷导致振荡器频率不可避免的色散,随着尺寸减小,热噪声的随机效应日益重要,以及振荡器的非线性将在较大的运动幅度下发展,这将提高检测方案的信噪比。为了成功地开发应用程序,必须理解这些内容。因此,迫切需要结合非线性、噪声和色散、集体行为(模式形成)和量子效应等问题,对这种小尺度振荡器进行理论研究。这些领域中的每一个都有大量的理论工作,或多或少适用于实验。可制造器件范围的进展为在新的物理领域中测试、改进和结合这些理论思想提供了强大的实验刺激。通过片上诊断和处理,对大量动态元件的行为进行精确测量的可能性,使介观振荡器成为这些理论思想的令人兴奋的试验台。反过来,该理论可能为技术应用提出全新的协议,并为设计更传统的协议提供新的见解。除了与加州理工学院的一个实验项目密切配合外,这项研究还将涉及研究生和本科生。亚微米尺度上的机械振荡——无论是用光刻技术制造的,还是像碳纳米管那样从原子尺度上建立起来的——结合了非线性、噪声和色散、集体行为以及最终的量子效应等物理特性,这些系统既易于实验研究,又可能在技术上很重要。这个项目是在理论上研究这些振荡的非线性、非平衡、随机和模式形成方面,有来自加州理工学院并行实验项目的强烈动机。除了与加州理工学院的一个实验项目密切配合外,这项研究还将涉及研究生和本科生

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cross其他文献

Effectiveness of oral emversus/em intravenous tranexamic acid in primary total hip and knee arthroplasty: a randomised, non-inferiority trial
口服与静脉注射氨甲环酸在初次全髋关节和膝关节置换术中的有效性:一项随机、非劣效性试验
  • DOI:
    10.1016/j.bja.2022.11.003
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    9.200
  • 作者:
    Christopher J. DeFrancesco;Julia F. Reichel;Ejiro Gbaje;Marko Popovic;Carrie Freeman;Marisa Wong;Danya DeMeo;Jiabin Liu;Alejandro Gonzalez Della Valle;Amar Ranawat;Michael Cross;Peter K. Sculco;Stephen Haskins;David Kim;Daniel Maalouf;Meghan Kirksey;Kethy Jules-Elysee;Ellen M. Soffin;Kanupriya Kumar;Jonathan Beathe;Stavros G. Memtsoudis
  • 通讯作者:
    Stavros G. Memtsoudis
Japan's fifth generation computer project successes and failures
  • DOI:
    10.1016/s0016-3287(89)80010-2
  • 发表时间:
    1989-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Cross
  • 通讯作者:
    Michael Cross
Characterizing functional heterogeneity in hematopoietic progenitor cell cultures: a combined experimental and modeling approach
  • DOI:
    10.1016/j.exphem.2013.05.257
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Enrica Bach;Thomas Zerjatke;Manuela Herklotz;Nico Scherf;Ingo Roeder;Tilo Pompe;Michael Cross;Ingmar Glauche
  • 通讯作者:
    Ingmar Glauche
A new U6 small nuclear ribonucleoprotein-specific protein conserved between cis- and trans-splicing systems
顺式和反式剪接系统之间保守的新 U6 小核核糖核蛋白特异性蛋白
  • DOI:
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    K. Groning;Z. Pálfi;Shashi Gupta;Michael Cross;T. Wolff;Albrecht Bindereif
  • 通讯作者:
    Albrecht Bindereif
Abstract 3361: Progressive Left Ventricle, Myocyte Dysfunction, and Heart Failure in the Lethality of Anthrax Toxin in Conscious Dogs
摘要 3361:进行性左心室、肌细胞功能障碍和心力衰竭对清醒狗的炭疽毒素致死率
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheping Cheng;S. Masutani;Heng;Michael Cross;Chun;Peng Zhou;J. Cann;J. Cline;W. Little;S. Kuo;A. Frankel
  • 通讯作者:
    A. Frankel

Michael Cross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Cross', 18)}}的其他基金

STTR Phase I: Rapid-Release Cell Culture Platform for Flow Cytometry
STTR 第一阶段:用于流式细胞术的快速释放细胞培养平台
  • 批准号:
    2126903
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Synchronization of Nanomechanical Oscillators
纳米机械振荡器的同步
  • 批准号:
    1003337
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Phonon Heat Transport and Mechanical Oscillations in Mesoscopic Systems
介观系统中的声子热传输和机械振荡
  • 批准号:
    9873573
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Spatial Structure and Dynamics of Non-Equilibrium Systems
非平衡系统的空间结构和动力学
  • 批准号:
    9311444
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Large Scale Structure and Dynamics of Non-Equilibrium Systems
非平衡系统的大规模结构和动力学
  • 批准号:
    9013984
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamics of Non-Equilibrium Systems and Theory of Quantum Fluids and Solids
非平衡系统动力学以及量子流体和固体理论
  • 批准号:
    8715474
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamics of Non-Equilibrium Systems and Theory of Quantum Fluids and Solids (Materials Research)
非平衡系统动力学以及量子流体和固体理论(材料研究)
  • 批准号:
    8412543
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

The Importance of Nonlinear Physics in Radiation Belt Modelling
非线性物理在辐射带建模中的重要性
  • 批准号:
    NE/V013963/2
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
  • 批准号:
    23KJ2028
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Symmetry Group Analysis and Surfaces in Lie Algebras for Nonlinear Phenomena in Physics
物理学中非线性现象的李代数的对称群分析和曲面
  • 批准号:
    RGPIN-2019-03984
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Optoelectronics and Nonlinear fibre physics to Develop a new frequency comb tool for eye imagING
连接光电子学和非线性光纤物理学,开发用于眼部成像的新型频率梳工具
  • 批准号:
    BB/X005100/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
  • 批准号:
    RGPIN-2021-02600
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The Importance of Nonlinear Physics in Radiation Belt Modelling
非线性物理在辐射带建模中的重要性
  • 批准号:
    NE/V013963/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
  • 批准号:
    RGPIN-2021-02600
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear PDEs in Complex Geometry and Physics
复杂几何和物理中的非线性偏微分方程
  • 批准号:
    DGECR-2021-00065
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了