Dynamics of Disordered Non-Equilibrium Systems: Hysteresis, Noise, and Domain Wall Dynamics in Systems Ranging from Magnets to Earthquakes

无序非平衡系统的动力学:从磁铁到地震的系统中的磁滞、噪声和畴壁动力学

基本信息

  • 批准号:
    0314279
  • 负责人:
  • 金额:
    $ 15.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

Many systems "crackle"; when pushed slowly they respond with discrete events in a broad distribution of sizes and durations. The earth responds to slow tectonic motion with quakes ranging in size from tiny tremors to devastating multitude-nine quakes. Similarly, a magnetic tape in a slowly changing external magnetic field magnetizes in a series of jumps (Barkhausen noise) - avalanches of reorienting magnetic domains that range from microscopic to macroscopic in size.In the past few years there has been rapid progress in developing models and theories of scale-invariant, often-universal behavior in driven, disordered, nonlinear, dynamical systems. This theoretical project will carefully test some of these models against experimental results, extract universal predictions for future experiments, extend the models if necessary to adequately describe experiments, and explore the size of the corresponding universality classes. The methods employed range from numerical simulations to scaling theories, and draw on ideas ranging from hydrodynamics to dynamical and disordered systems theory.Intellectual merit: Barkhausen noise serves as an ideal experimental example system for studying collective "crackling" noise in hysteretic systems. It is relatively accessible to experiments and is also of commercial interest, as for non-destructive testing. The non-equilibrium zero temperature random field Ising model (RFIM) and recent variants (with applications far beyond magnetic systems) have been extraordinarily successful in modeling universal scaling exponents obtained from Barkhausen noise measurements in a large class of different materials. Adding temperature fluctuations to the model at finite field sweep rate, the entire experimentally relevant crossover regime from far-from equilibrium to close-to equilibrium will be explored and compared to recent experiments in magnetic and ferroelectric systems. The corresponding equilibrium and non-equilibrium universality classes will be compared in detail, to answer long-standing questions relevant to both experiments and applications.Broader impact is two-fold. Students involved with the project will gain a broad range of skills and learn to work with groups of theorists, experimentalists and possibly industrial representatives. Besides being of great fundamental importance, the results of this research hold promise of technological applications.%%%Many systems "crackle"; when pushed slowly they respond with discrete events in a broad distribution of sizes and durations. The earth responds to slow tectonic motion with quakes ranging in size from tiny tremors to devastating multitude-nine quakes. Similarly, a magnetic tape in a slowly changing external magnetic field magnetizes in a series of jumps (Barkhausen noise) - avalanches of reorienting magnetic domains that range from microscopic to macroscopic in size.In the past few years there has been rapid progress in developing models and theories of scale-invariant, often-universal behavior in driven, disordered, nonlinear, dynamical systems. This theoretical project will carefully test some of these models against experimental results, extract universal predictions for future experiments, extend the models if necessary to adequately describe experiments, and explore the size of the corresponding universality classes. The methods employed range from numerical simulations to scaling theories, and draw on ideas ranging from hydrodynamics to dynamical and disordered systems theory.***
许多系统“破裂”;当被缓慢推动时,它们会以大小和持续时间分布广泛的离散事件做出反应。地球对缓慢的构造运动作出反应,产生大小不等的地震,从微小的震动到毁灭性的九级地震。同样,在缓慢变化的外部磁场中,磁带会产生一系列的跳跃(巴克豪森噪声)——从微观到宏观大小的重新定向磁畴的雪崩。在过去的几年中,在驱动的、无序的、非线性的动力系统中,尺度不变的、通常是普遍的行为的模型和理论的发展取得了迅速的进展。这个理论项目将根据实验结果仔细测试其中的一些模型,为未来的实验提取普遍的预测,在必要时扩展模型以充分描述实验,并探索相应的普遍性类的大小。所采用的方法范围从数值模拟到尺度理论,并借鉴了从流体力学到动力学和无序系统理论的思想。知识价值:巴克豪森噪声是研究迟滞系统中集体“噼啪”噪声的理想实验实例系统。相对而言,它易于进行实验,也具有商业利益,就像无损检测一样。非平衡零温度随机场伊辛模型(RFIM)和最近的变种(应用远远超出磁系统)已经非常成功地模拟了从巴克豪森噪声测量中获得的大量不同材料的通用标度指数。在有限场扫描速率下,在模型中加入温度波动,将探索从远离平衡到接近平衡的整个实验相关交叉状态,并与最近在磁性和铁电系统中的实验进行比较。将详细比较相应的平衡和非平衡普适性类,以回答与实验和应用相关的长期问题。更广泛的影响是双重的。参与该项目的学生将获得广泛的技能,并学会与理论家、实验家和可能的工业代表一起工作。除了具有重要的基础意义外,该研究结果还具有技术应用前景。%%%许多系统“崩溃”;当被缓慢推动时,它们会以大小和持续时间分布广泛的离散事件做出反应。地球对缓慢的构造运动作出反应,产生大小不等的地震,从微小的震动到毁灭性的九级地震。同样,在缓慢变化的外部磁场中,磁带会产生一系列的跳跃(巴克豪森噪声)——从微观到宏观大小的重新定向磁畴的雪崩。在过去的几年中,在驱动的、无序的、非线性的动力系统中,尺度不变的、通常是普遍的行为的模型和理论的发展取得了迅速的进展。这个理论项目将根据实验结果仔细测试其中的一些模型,为未来的实验提取普遍的预测,在必要时扩展模型以充分描述实验,并探索相应的普遍性类的大小。所采用的方法范围从数值模拟到尺度理论,并借鉴了从流体力学到动力学和无序系统理论的思想

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karin Dahmen其他文献

Universal clues in noisy skews
嘈杂倾斜中的普遍线索
  • DOI:
    10.1038/nphys140
  • 发表时间:
    2005-10-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Karin Dahmen
  • 通讯作者:
    Karin Dahmen

Karin Dahmen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karin Dahmen', 18)}}的其他基金

Collaborative Research: Effect of Cohesion on Size and Statistics of Avalanches in Granular Systems
合作研究:颗粒系统中内聚力对雪崩大小和统计的影响
  • 批准号:
    1336634
  • 财政年份:
    2014
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Dynamical Systems Special Topics: Dynamics of granular materials: jamming, avalanches, disorder, and localization
动力系统专题:颗粒材料动力学:干扰、雪崩、无序和定位
  • 批准号:
    1069224
  • 财政年份:
    2011
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Plasticity and Avalanches: Connections Between Systems Ranging from Metals to Granular Materials
塑性和雪崩:从金属到颗粒材料的系统之间的连接
  • 批准号:
    1005209
  • 财政年份:
    2010
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant
Dynamics of Disordered Non-equilibrium Systems: Hysteresis, Noise, and Domain Wall Dynamics in Systems Ranging from Magnets to Earthquakes
无序非平衡系统的动力学:从磁铁到地震的系统中的磁滞、噪声和畴壁动力学
  • 批准号:
    0072783
  • 财政年份:
    2000
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Energy band design based on controlling ordered/disordered structure of non-thermal equilibrium group-IV alloy thin films
基于控制非热平衡IV族合金薄膜有序/无序结构的能带设计
  • 批准号:
    21H01809
  • 财政年份:
    2021
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Mechanics of Non-Local Disordered Models Associated with Quantum LDPC codes
与量子 LDPC 码相关的非局域无序模型的统计力学
  • 批准号:
    1820939
  • 财政年份:
    2018
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Non-equilibrium dynamics and turbulence in disordered Bose gas
无序玻色气体中的非平衡动力学和湍流
  • 批准号:
    1948783
  • 财政年份:
    2017
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Studentship
Tuning order from disordered ground states in geometrically frustrated classical "non-hbar" materials
从几何受挫经典“非 hbar”材料中的无序基态调整顺序
  • 批准号:
    EP/M01052X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Fellowship
Collaborative Research: Statistical Mechanics of Non-local Disordered Models Associated with Quantum LDPC Codes
合作研究:与量子 LDPC 码相关的非局域无序模型的统计力学
  • 批准号:
    1416578
  • 财政年份:
    2014
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Mechanics of Non-local Disordered Models Associated with Quantum LDPC Codes
合作研究:与量子 LDPC 码相关的非局域无序模型的统计力学
  • 批准号:
    1415600
  • 财政年份:
    2014
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Quantum phase transitions and non-equilibrium dynamics of disordered one-dimensional quantum fluids
无序一维量子流体的量子相变和非平衡动力学
  • 批准号:
    25800228
  • 财政年份:
    2013
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Disordered Eating Behavior and Non-suicidal Self-injury: A Daily Diary Study
饮食行为紊乱和非自杀性自残:每日日记研究
  • 批准号:
    264871
  • 财政年份:
    2012
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Miscellaneous Programs
MECHANISMS OF DISORDERED HEPATIC LIPID PARTITIONING IN NON-ALCOHOLIC STEATOHEPATITIS
非酒精性脂肪性肝炎中肝脏脂质分配紊乱的机制
  • 批准号:
    nhmrc : 418101
  • 财政年份:
    2007
  • 资助金额:
    $ 15.6万
  • 项目类别:
    NHMRC Project Grants
Non Hermitian dynamics of disordered media and interacting atomic Bose-Einstein Condensates
无序介质和相互作用的原子玻色-爱因斯坦凝聚体的非厄米动力学
  • 批准号:
    40137112
  • 财政年份:
    2007
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了