Collaborative Research: Statistical Mechanics of Non-local Disordered Models Associated with Quantum LDPC Codes

合作研究:与量子 LDPC 码相关的非局域无序模型的统计力学

基本信息

  • 批准号:
    1416578
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-15 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

The main challenge for building a quantum computer is that quantum components are prone to error. Error correction can be used to overcome this challenge but it places stringent requirements on future quantum computer hardware. One promising method of quantum error correction is the so-called Quantum Low-Density-Parity-Check (LDPC) codes. If successful, using these codes a large quantum computer could in principle be built. Compared to other existing schemes, it would be much more efficient, requiring fewer redundant quantum bits, called qubits. Studying these codes will improve our understanding of the quantum theoretical problems related to quantum computation. This project will provide excellent opportunities for graduate students. The award supports theoretical research on physics of non-local discrete and continuous statistical-mechanical models associated with quantum error correcting codes. An important feature of such codes is the existence of the decoding threshold, where a sufficiently large code can deal effectively with any noise level below the threshold, but not above it. Disordered spin models associated with decoding transition (these models have exact Wegner's self-duality), related models with large gauge groups associated with fault-tolerant decoding, as well as models with extensive ground state entropy, including U(1) gauge theories which generalize Wen's mutual Chern-Simons theory describing the ground state of Kitaev's toric code will be constructed and studied. Models associated with quantum LDPC codes are expected to be particularly interesting since their interaction terms involve a limited number of participating particles. The low-energy sectors of these models are expected to be dominated by non-trivial extended defects that generalize the notion of topological defects like domain walls, vortices, etc. New physics includes a phase transition driven by an extensive entropy of defect classes, coming from the exponentially large number of dimensions describing the original quantum code. Results will be relevant to several established fields of physics traditionally dealing with similar models: statistical mechanics of spin glasses, phase transition theory, etc., with potential applications extending to many other fields.
构建量子计算机的主要挑战是量子组件容易出错。纠错可以用来克服这一挑战,但它对未来的量子计算机硬件提出了严格的要求。量子纠错的一种有前途的方法是所谓的量子低密度奇偶校验(LDPC)码。如果成功的话,使用这些代码原则上可以建造一台大型量子计算机。与其他现有的方案相比,它将更有效,需要更少的冗余量子比特,称为量子比特。研究这些代码将提高我们对与量子计算相关的量子理论问题的理解。这个项目将为研究生提供极好的机会。该奖项支持与量子纠错码相关的非局部离散和连续物理力学模型的物理学理论研究。这种码的一个重要特征是存在解码阈值,其中足够大的码可以有效地处理低于阈值的任何噪声电平,但不能处理高于阈值的任何噪声电平。(这些模型具有精确的Wegner自对偶性),具有与容错解码相关联的大规范群的相关模型,以及具有广泛基态熵的模型,包括U(1)规范理论,它推广了描述Kitaev复曲面码基态的Wen的相互Chern-Simons理论。与量子LDPC码相关的模型预计将特别有趣,因为它们的相互作用项涉及有限数量的参与粒子。这些模型的低能量部分预计将主要由非平凡的扩展缺陷,概括了拓扑缺陷的概念,如域壁,漩涡等新物理包括一个相变驱动的广泛的熵的缺陷类,来自指数大的数量的维度描述原始的量子代码。结果将与传统上处理类似模型的几个已建立的物理学领域相关:自旋玻璃的统计力学,相变理论等,其潜在应用扩展到许多其它领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Pryadko其他文献

Probing Membrane-Surface Interactions via Brownian Motion of Micro-Sized Beads
  • DOI:
    10.1016/j.bpj.2010.12.2953
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaojian Chen;Dong Gui;Nancy Bernal;Eugina Olivas;Hector Garcia;Shane Nystrom;Leonid Pryadko;Roya Zandi;Umar Mohideen
  • 通讯作者:
    Umar Mohideen

Leonid Pryadko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Pryadko', 18)}}的其他基金

Codes, Circuits, and Networks for Modular Quantum Computation
模块化量子计算的代码、电路和网络
  • 批准号:
    2112848
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Statistical Mechanics of Non-Local Disordered Models Associated with Quantum LDPC codes
与量子 LDPC 码相关的非局域无序模型的统计力学
  • 批准号:
    1820939
  • 财政年份:
    2018
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
AF: Small: Long-time coherence protection via dynamical decoupling and encoded control
AF:小:通过动态解耦和编码控制实现长时间相干性保护
  • 批准号:
    1018935
  • 财政年份:
    2010
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Quantum: Dynamics of an open quantum system: decoherence processes and encoded control
量子:开放量子系统的动力学:退相干过程和编码控制
  • 批准号:
    0622242
  • 财政年份:
    2006
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了