Collaborative Research ITR/NGS: An Integrated Simulation Environment for High-Resolution Computational Methods in Electromagnetics with Biomedical Applications
合作研究 ITR/NGS:电磁学与生物医学应用高分辨率计算方法的集成仿真环境
基本信息
- 批准号:0324957
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-15 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current technologies for radiationbased treatment of cancerous tumors rely almost exclusively on diagnosticimages such as MRI and PET scans to enable a careful targeting of multiple high-intensity beams.However, the very complex nature of the penetration of radiation energy into the biological tissue makes such targeting difficult and error-prone, possibly even prohibiting radiative treatment due to the risk of damaging essential tissue in close proximity to the cancerous areas. Such issues are naturally of particular concern in relation to treatment of brain cancer.This project will conduct research on the development of a simulation environment which eventually will provide a virtual patient-specific model of the area of interest and an ability to accurately and efficiently model wave-propagation within such an environment, with the potential to ultimately provide the radiation specialist with an online tool for fine tuning the targeting of radiation energy and, at a future stage, perhaps even model the impact of the energy deposition and heat release on the tissue.The project will develop an environment comprising of (a) the cleaning and segmentation of MRI data, including data with noise sensitivity, (b) extraction of material data and construction of a patient-specific volume model of the target of interest, (c) the generation of high-order, curvilinear, finite elements grids, (d) full as well as reduced order modeling of the penetration/refraction of electromagnetic energy into the volume model, and (e) visualization and extraction of physiological data of interest. These different elements will be integrated into a flexible, stand-alone environment and will, as part of the development, be tested extensively on phantom data as well as real MRI data, possibly with added artificial noise to explore robustness.The key developments will include new image segmentation and cleaning algorithms, improved material models, the development of efficient high-order accurate computational schemes for wave-propagation, efficient methods for domain truncation, and tools for visualization and data extraction. These are all problems of generic importance with potential for impact well beyond the particular application being considered.
目前用于癌性肿瘤放射治疗的技术几乎完全依赖于MRI和PET扫描等诊断图像,以实现多个高强度光束的仔细瞄准。然而,辐射能量渗透到生物组织中的非常复杂的性质使得这种瞄准变得困难且容易出错,甚至可能由于损害癌区域附近的基本组织的风险而禁止放射治疗。这些问题自然是脑癌治疗中特别关注的问题。该项目将对模拟环境的开发进行研究,最终将提供感兴趣区域的虚拟患者特定模型,并能够准确有效地对波传播进行建模在这样的环境中,具有最终为放射专家提供在线工具的潜力,用于微调放射能量的目标,并且在将来的阶段,该项目将开发一个环境,包括(a)MRI数据的清理和分割,包括具有噪声敏感性的数据,(B)提取材料数据并构建感兴趣目标的患者特异性体积模型,(c)生成高阶曲线有限元网格,(d)对电磁能量到体积模型中的穿透/折射的完全以及降阶建模,以及(e)感兴趣的生理数据的可视化和提取。这些不同的元素将被集成到一个灵活的、独立的环境中,作为开发的一部分,将在体模数据和真实的MRI数据上进行广泛的测试,可能会添加人工噪声以探索鲁棒性。关键的开发将包括新的图像分割和清理算法,改进的材料模型,开发波传播的高效高阶精确计算方案,域截断的有效方法,以及可视化和数据提取的工具。这些都是具有普遍重要性的问题,其潜在影响远远超出所考虑的具体应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Gelb其他文献
Empirical Bayesian Inference Using a Support Informed Prior
使用支持知情先验的经验贝叶斯推理
- DOI:
10.1137/21m140794x - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jiahui Zhang;Anne Gelb;Theresa Scarnati - 通讯作者:
Theresa Scarnati
A High Order Method for Determining the Edges in the Gradient of a Function
确定函数梯度边的高阶方法
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
R. Saxena;Anne Gelb;H. Mittelmann - 通讯作者:
H. Mittelmann
A High-Dimensional Inverse Frame Operator Approximation Technique
一种高维逆框算子逼近技术
- DOI:
10.1137/15m1047593 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Guohui Song;Jacqueline Davis;Anne Gelb - 通讯作者:
Anne Gelb
Edge detection from truncated Fourier data using spectral mollifiers
使用光谱缓和器从截断的傅立叶数据中进行边缘检测
- DOI:
10.1007/s10444-011-9258-4 - 发表时间:
2011 - 期刊:
- 影响因子:1.7
- 作者:
D. Cochran;Anne Gelb;Yang Wang - 通讯作者:
Yang Wang
Parameter Optimization and Reduction of Round Off Error for the Gegenbauer Reconstruction Method
- DOI:
10.1023/b:jomp.0000025933.39334.17 - 发表时间:
2004-06-01 - 期刊:
- 影响因子:3.300
- 作者:
Anne Gelb - 通讯作者:
Anne Gelb
Anne Gelb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Gelb', 18)}}的其他基金
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Accurate, Efficient and Robust Computational Algorithms for Detecting Changes in a Scene Given Indirect Data
协作研究:准确、高效和稳健的计算算法,用于检测给定间接数据的场景变化
- 批准号:
1912685 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Approach to Convex Optimization Algorithms
协作研究:凸优化算法的集成方法
- 批准号:
1732434 - 财政年份:2016
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Approach to Convex Optimization Algorithms
协作研究:凸优化算法的集成方法
- 批准号:
1521600 - 财政年份:2015
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Novel Numerical Approximation Techniques for Non-Standard Sampling Regimes
非标准采样制度的新颖数值逼近技术
- 批准号:
1216559 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Southwest Conference on Integrated Mathematical Methods in Medical Imaging; February 2010; Tempe, Arizona
西南医学影像综合数学方法会议;
- 批准号:
0944521 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Integrated Mathematical Methods in Medical Imaging
FRG:合作研究:医学成像中的综合数学方法
- 批准号:
0652833 - 财政年份:2007
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
High Order Reconstruction Using Spectral Methods
使用谱方法进行高阶重建
- 批准号:
0510813 - 财政年份:2005
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
0833849 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0808419 - 财政年份:2007
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
- 批准号:
0711040 - 财政年份:2007
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: ITR-(ASE)-(dmc): Overcoming Fractionation Errors in Cancer Treatement Planning
合作研究:ITR-(ASE)-(dmc):克服癌症治疗计划中的分割错误
- 批准号:
0749671 - 财政年份:2006
- 资助金额:
$ 28万 - 项目类别:
Standard Grant