Collaborative Research: An Integrated Approach to Convex Optimization Algorithms

协作研究:凸优化算法的集成方法

基本信息

  • 批准号:
    1732434
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-10-21 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Image reconstruction and feature extraction have been important aspects in various applications such as medical resonance imaging (MRI) and synthetic aperture radar (SAR). However, these procedures involve challenges. Different applications may vary in data acquisition (sampling) domains, levels of detail required, and processing domains for the features of interest. The data acquisition is usually under-prescribed and noisy. The sampling domains and/or processing domains may not be well suited for the underlying question. All of these make the problems ill-posed, and various regularization techniques are necessary to study the problems by formulating them as convex optimization models. This project will develop an integrated framework of investigating such convex optimization models. The project will provide graduate students with opportunities for training through research involvement and will prepare them for careers in science and engineering. The PIs aim to propose a systematic way of evaluating various regularization techniques in such models, conduct a rigorous numerical analysis of the models, and develop efficient numerical algorithms of solving the models. Specifically, the PIs will address the following technical questions: (1) What constraints must be placed on the collected data in order to construct a numerically robust approximation to the underlying function? (2) How quickly and in what sense does the approximation converge? (3) Are the corresponding numerical algorithms developed for the fidelity and regularization terms viable? (4) How well are perturbations from the original data tolerated? The project aims to provide answers to all of these questions.
图像重建和特征提取在医学共振成像(MRI)和合成孔径雷达(SAR)等领域有着重要的应用。然而,这些程序涉及挑战。不同的应用可能在数据采集(采样)域、所需的细节级别和感兴趣特征的处理域方面有所不同。数据采集通常是在规定和噪声。采样域和/或处理域可能不太适合潜在问题。所有这些都使得问题不适定,各种正则化技术是必要的研究问题,制定他们作为凸优化模型。本计画将发展一个整合的架构来研究这种凸最佳化模式。该项目将通过参与研究为研究生提供培训机会,并为他们在科学和工程领域的职业生涯做好准备。PI旨在提出一种系统的方法来评估这些模型中的各种正则化技术,对模型进行严格的数值分析,并开发求解模型的有效数值算法。具体而言,PI将解决以下技术问题:(1)为了构建基本函数的数值稳健近似,必须对收集的数据施加哪些约束?(2)近似收敛的速度有多快,在什么意义上收敛?(3)为保真度和正则化项开发的相应数值算法是否可行?(4)对原始数据的扰动容忍度如何?该项目旨在为所有这些问题提供答案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne Gelb其他文献

Empirical Bayesian Inference Using a Support Informed Prior
使用支持知情先验的经验贝叶斯推理
A High Order Method for Determining the Edges in the Gradient of a Function
确定函数梯度边的高阶方法
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Saxena;Anne Gelb;H. Mittelmann
  • 通讯作者:
    H. Mittelmann
A High-Dimensional Inverse Frame Operator Approximation Technique
一种高维逆框算子逼近技术
  • DOI:
    10.1137/15m1047593
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guohui Song;Jacqueline Davis;Anne Gelb
  • 通讯作者:
    Anne Gelb
Edge detection from truncated Fourier data using spectral mollifiers
使用光谱缓和器从截断的傅立叶数据中进行边缘检测
Parameter Optimization and Reduction of Round Off Error for the Gegenbauer Reconstruction Method
  • DOI:
    10.1023/b:jomp.0000025933.39334.17
  • 发表时间:
    2004-06-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Anne Gelb
  • 通讯作者:
    Anne Gelb

Anne Gelb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne Gelb', 18)}}的其他基金

Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate, Efficient and Robust Computational Algorithms for Detecting Changes in a Scene Given Indirect Data
协作研究:准确、高效和稳健的计算算法,用于检测给定间接数据的场景变化
  • 批准号:
    1912685
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Approach to Convex Optimization Algorithms
协作研究:凸优化算法的集成方法
  • 批准号:
    1521600
  • 财政年份:
    2015
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Novel Numerical Approximation Techniques for Non-Standard Sampling Regimes
非标准采样制度的新颖数值逼近技术
  • 批准号:
    1216559
  • 财政年份:
    2012
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Southwest Conference on Integrated Mathematical Methods in Medical Imaging; February 2010; Tempe, Arizona
西南医学影像综合数学方法会议;
  • 批准号:
    0944521
  • 财政年份:
    2009
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Integrated Mathematical Methods in Medical Imaging
FRG:合作研究:医学成像中的综合数学方法
  • 批准号:
    0652833
  • 财政年份:
    2007
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
High Order Reconstruction Using Spectral Methods
使用谱方法进行高阶重建
  • 批准号:
    0510813
  • 财政年份:
    2005
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research ITR/NGS: An Integrated Simulation Environment for High-Resolution Computational Methods in Electromagnetics with Biomedical Applications
合作研究 ITR/NGS:电磁学与生物医学应用高分辨率计算方法的集成仿真环境
  • 批准号:
    0324957
  • 财政年份:
    2004
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了