ITR: Collaborative Research: Using Humanoids to Understand Humans
ITR:协作研究:使用类人机器人来理解人类
基本信息
- 批准号:0325383
- 负责人:
- 金额:$ 146.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research in neuroscience and motor psychology has made tremendous progress in generating better understanding of how the human brain generates motor behaviors. At the same time robotics and computer graphics have created increasingly impressive examples of theories and implementations of a variety of movement behaviors, as seen in humanoid robotics and interactive animations and games. Despite this progress, however, a major shortcoming in all these disciplines remains an understanding of how complex movements that we make every day can be created and combined flexibly, robustly, and autonomously. The goal of this project is to develop and evaluate comprehensive information processing models of human motor behavior, to overcome these shortcomings. The PIs will investigate the algorithms and representations (such as what is stored in long term memory) that enable the skilled behavior we see every day, using brain imaging, studies of behavior, and evaluations of our ideas on humanoid robots and in simulation. It brings together a set of researchers who have individually or in small collaborations addressed fragments of this challenge. The PIs have been successful in investigating individual and highly specialized motor tasks, but have not yet integrated a significant number of behaviors such that a robot or simulation could autonomously and robustly interact with a dynamic environment. Members of this team have built biologically inspired locomoting andhumanoid robots that balance; walk and run on both flat terrain, inclines, and stairs at a wide range of speeds; accurately place their feet while walking and running; jump and leap; jump through hoops; perform flips; recover from slips, trips, and stumbles; compliantly interact with humans; throw, catch, hit, and juggle balls; devilstick; and play air hockey. They have received equipment funding to develop a next generation humanoid in collaboration with Sarcos, from the NSF CISE Collaborative Research Resources (Research Infrastructure) Program. This humanoid experimental testbed will allow them to develop and evaluate their proposals as to how behavior is generated much more effectively. In the past, this group and others have focused on modeling single tasks. This project focuses on developing and testing approaches to coordinate many behaviors, and handle behavior selection, multiple tasks, behavioral transitions, and error compensation, making the crucial step from highly specialized investigations to a more general theory of information processing in human motor control.
神经科学和运动心理学的研究在更好地理解人类大脑如何产生运动行为方面取得了巨大进展。与此同时,机器人技术和计算机图形学创造了越来越多令人印象深刻的理论和实现各种运动行为的例子,如在人形机器人和交互式动画和游戏中看到的那样。然而,尽管取得了这些进展,但所有这些学科的一个主要缺点仍然是对我们每天所做的复杂动作如何灵活、稳健和自主地创造和组合的理解。本项目的目标是开发和评估人类运动行为的综合信息处理模型,以克服这些缺点。pi将使用脑成像、行为研究和评估我们对人形机器人和模拟的想法,研究使我们每天看到的熟练行为成为可能的算法和表征(例如存储在长期记忆中的内容)。它汇集了一组研究人员,他们单独或以小型合作方式解决了这一挑战的部分问题。pi已经成功地研究了个体和高度专业化的运动任务,但还没有整合大量的行为,这样一个机器人或模拟可以自主地和强大地与动态环境交互。这个团队的成员已经建造了生物启发的运动机器人和人形机器人,这些机器人可以平衡;在平地、斜坡和楼梯上以不同的速度行走和奔跑;走路和跑步时双脚的位置准确;跳啊跳;跳圈;执行翻转;从滑倒、绊倒和绊倒中恢复;顺从地与人类互动;扔、接、打、抛球;devilstick;玩空中曲棍球。他们已经从NSF CISE合作研究资源(研究基础设施)计划获得了与Sarcos合作开发下一代人形机器人的设备资金。这个类人实验平台将允许他们开发和评估他们的建议,如何更有效地产生行为。在过去,这个小组和其他小组专注于单个任务的建模。本项目致力于开发和测试协调多种行为、处理行为选择、多任务、行为转换和错误补偿的方法,使人类运动控制信息处理从高度专业化的研究向更一般的理论迈出关键一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Atkeson其他文献
On human-in-the-loop optimization of human–robot interaction
关于人机交互中人在回路的优化
- DOI:
10.1038/s41586-024-07697-2 - 发表时间:
2024-09-25 - 期刊:
- 影响因子:48.500
- 作者:
Patrick Slade;Christopher Atkeson;J. Maxwell Donelan;Han Houdijk;Kimberly A. Ingraham;Myunghee Kim;Kyoungchul Kong;Katherine L. Poggensee;Robert Riener;Martin Steinert;Juanjuan Zhang;Steven H. Collins - 通讯作者:
Steven H. Collins
Christopher Atkeson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Atkeson', 18)}}的其他基金
S&AS: INT: Smart And Autonomous Systems For Repair And Improvisation
S
- 批准号:
1849287 - 财政年份:2019
- 资助金额:
$ 146.67万 - 项目类别:
Standard Grant
NRI: INT: Individualized Co-Robotics
NRI:INT:个性化协作机器人
- 批准号:
1734449 - 财政年份:2017
- 资助金额:
$ 146.67万 - 项目类别:
Standard Grant
RI: Small: Optical Skin For Robots: Tactile Sensing and Whole Body Vision
RI:小型:机器人光学皮肤:触觉传感和全身视觉
- 批准号:
1717066 - 财政年份:2017
- 资助金额:
$ 146.67万 - 项目类别:
Standard Grant
Approximate Dynamic Programming Using Random Sampling
使用随机采样的近似动态规划
- 批准号:
0824077 - 财政年份:2008
- 资助金额:
$ 146.67万 - 项目类别:
Standard Grant
ITR: Human Activity Monitoring Using Simple Sensors
ITR:使用简单传感器监测人类活动
- 批准号:
0312991 - 财政年份:2003
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
IGERT: Interdisciplinary Research Training in Assistive Technology
IGERT:辅助技术跨学科研究培训
- 批准号:
0333420 - 财政年份:2003
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
(PYI) Computational and Experimental Studies of Motor Learning in Humans and Robots (Computer Research)
(PYI)人类和机器人运动学习的计算和实验研究(计算机研究)
- 批准号:
8858719 - 财政年份:1988
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
Adaptive Feedforward Control Applied to Robotics
应用于机器人的自适应前馈控制
- 批准号:
8707838 - 财政年份:1987
- 资助金额:
$ 146.67万 - 项目类别:
Standard Grant
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
0833849 - 财政年份:2008
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0808419 - 财政年份:2007
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
- 批准号:
0711040 - 财政年份:2007
- 资助金额:
$ 146.67万 - 项目类别:
Standard Grant
ITR Collaborative Research: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences
ITR 合作研究:GEON:为地球科学创建网络基础设施的研究项目
- 批准号:
0724265 - 财政年份:2006
- 资助金额:
$ 146.67万 - 项目类别:
Continuing Grant