Learning From Demonstration

从示范中学习

基本信息

  • 批准号:
    9711770
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-02-01 至 2001-01-31
  • 项目状态:
    已结题

项目摘要

The goals of the research are to develop new robot learning algorithms for qualitatively more complex robots and tasks than have been attempted so far, and to greatly increase the level of automation of implementing robot learning. The research will focus on: 1: tasks and robots with many degrees of freedom, 2: having one robot learn to perform multiple tasks, and generalize appropriately between tasks, 3: learning over a long time span, in which the robot, the task, and the environment change, and 4: combining multiple approaches to robot learning. The research will contribute to a more automatic process for selecting task structure, representations, and adjustable parameters and functions. Two types of learning will be emphasized: learning from demonstration, where the robot learns from a demonstration of how to perform a task, and reinforcement learning, where the robot learns by optimizing a reward function. Flexible methods to represent knowledge will be emphasized, including locally weighted learning and other nonparametric learning techniques. The techniques developed in implementing learning from demonstration will form the basis of the approach to more general learning problems, such as reinforcement learning. This research will be conducted in collaboration with Dr. Mitsuo Kawato at the Advanced Telecommunications Research Human Information Processing Laboratory in Japan. The expected significance of this research is that it will make it easier and less expensive to program robots and machine-based systems in general. From an engineering point of view the goal is to reduce the amount of expensive expert human input into robot programming. From a psychological point of view the goal is to understand how people learn, and this kind of work leads to models of how learning behavior might be accomplished.
该研究的目标是开发新的机器人学习算法,用于比迄今为止尝试的更复杂的机器人和任务,并大大提高实现机器人学习的自动化水平。 研究将集中在:1:具有多个自由度的任务和机器人,2:让一个机器人学习执行多个任务,并在任务之间进行适当的概括,3:在很长一段时间内学习,其中机器人,任务和环境发生变化,4:结合多种方法进行机器人学习。 该研究将有助于更自动地选择任务结构, 制图表达和可调整 参数 和功能 将强调两种类型的学习:从演示中学习,机器人从如何执行任务的演示中学习,以及强化学习,机器人通过优化奖励函数来学习。 将强调灵活的方法来表示知识,包括局部加权学习和其他非参数学习技术。 的 技术 发达 执行 学习 从示范将形成的基础上更一般的学习问题,如强化学习的方法。 这项研究将与日本高级电信研究人类信息处理实验室的Mitsuo Kawato博士合作进行。 这项研究的预期意义在于,它将使机器人和基于机器的系统更容易编程,成本更低。从工程的角度来看,目标是减少昂贵的专家人力投入到机器人编程中。 从心理学的角度来看,目标是了解人们是如何学习的,这类工作会导致学习行为如何完成的模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Atkeson其他文献

On human-in-the-loop optimization of human–robot interaction
关于人机交互中人在回路的优化
  • DOI:
    10.1038/s41586-024-07697-2
  • 发表时间:
    2024-09-25
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Patrick Slade;Christopher Atkeson;J. Maxwell Donelan;Han Houdijk;Kimberly A. Ingraham;Myunghee Kim;Kyoungchul Kong;Katherine L. Poggensee;Robert Riener;Martin Steinert;Juanjuan Zhang;Steven H. Collins
  • 通讯作者:
    Steven H. Collins

Christopher Atkeson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Atkeson', 18)}}的其他基金

S&AS: INT: Smart And Autonomous Systems For Repair And Improvisation
S
  • 批准号:
    1849287
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
NRI: INT: Individualized Co-Robotics
NRI:INT:个性化协作机器人
  • 批准号:
    1734449
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
RI: Small: Optical Skin For Robots: Tactile Sensing and Whole Body Vision
RI:小型:机器人光学皮肤:触觉传感和全身视觉
  • 批准号:
    1717066
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Approximate Dynamic Programming Using Random Sampling
使用随机采样的近似动态规划
  • 批准号:
    0824077
  • 财政年份:
    2008
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
ITR: Human Activity Monitoring Using Simple Sensors
ITR:使用简单传感器监测人类活动
  • 批准号:
    0312991
  • 财政年份:
    2003
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
IGERT: Interdisciplinary Research Training in Assistive Technology
IGERT:辅助技术跨学科研究培训
  • 批准号:
    0333420
  • 财政年份:
    2003
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Using Humanoids to Understand Humans
ITR:协作研究:使用类人机器人来理解人类
  • 批准号:
    0325383
  • 财政年份:
    2003
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
(PYI) Computational and Experimental Studies of Motor Learning in Humans and Robots (Computer Research)
(PYI)人类和机器人运动学习的计算和实验研究(计算机研究)
  • 批准号:
    8858719
  • 财政年份:
    1988
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Adaptive Feedforward Control Applied to Robotics
应用于机器人的自适应前馈控制
  • 批准号:
    8707838
  • 财政年份:
    1987
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Trustworthy Machine Learning by Demonstration
值得信赖的机器学习演示
  • 批准号:
    10067903
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Collaborative R&D
Development of Science Teaching Materials and Experimental Demonstration Methods for Learning Difficulties of Persons with Sensory Sensitivity and Other Developmental Disabilities
针对感官敏感和其他发育障碍者学习困难的科学教材和实验演示方法的开发
  • 批准号:
    23K02365
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Safe and Efficient Robot Learning from Demonstration in the Real World
职业:安全高效的机器人从现实世界的演示中学习
  • 批准号:
    2323384
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Implementation and demonstration of active learning approach to catalyst development based on high-throughput experimentation and evidence theory
基于高通量实验和证据理论的催化剂开发主动学习方法的实施和演示
  • 批准号:
    22KJ1482
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Model Development and Demonstration of Electricity Aggregation using Reinforcement Learning
使用强化学习的电力聚合模型开发和演示
  • 批准号:
    23K13306
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Towards Programmable Social Robots for Everyone: A Teacher-in-the-Loop Learning from Demonstration Framework
职业生涯:面向所有人的可编程社交机器人:教师在演示框架中进行循环学习
  • 批准号:
    2238088
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Force-based Robot Learning from Demonstration for Soft Tissue Manipulation
基于力的机器人从软组织操作演示中学习
  • 批准号:
    568405-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Postdoctoral Fellowships
A Learning from Demonstration (LfD) Framework for Enhancing MASCOT Autonomy to Support Operators' Needs
增强 MASCOT 自主性以支持运营商需求的示范学习 (LfD) 框架
  • 批准号:
    2758997
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Studentship
Toward Machine Competence: Combining Demonstration-based and Experience-based Machine Learning
迈向机器能力:结合基于演示和基于经验的机器学习
  • 批准号:
    RGPIN-2018-04674
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Discovery Grants Program - Individual
A Multi-modal Teaching Framework for Robot Learning from Demonstration
机器人示范学习的多模态教学框架
  • 批准号:
    547015-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了