Simulation of Magnetorheological Fluids: Microdevices and Self-Assembled Structures
磁流变流体模拟:微型器件和自组装结构
基本信息
- 批准号:0326702
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-01-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractCTS-0326702M. Maxey, Brown UniversityControlled manipulation of super-paramagnetic beads can lead to formation of self-assembled structures suitable for use as micro-optical filters, in DNA separation, or for exploring new concepts in micro- and nanofabrication, especially in three-dimensions. The evidence to date has come from experiments where magneto-rheological (MR) fluids with micron-size beads subject to external magnetic fields form columnar chains that have a regular distribution and spacing. The process is fully reversible and has been found to avoid the difficulties associated with electro-rheological fluids. Recent advances have been made, through laboratory demonstrations, of how particles can be manipulated in microchannels for cell sorting, cell removal or to fabricate new pumps, valves and mixers.While the experiments have demonstrated some of the intriguing properties of MR fluids, their full potential remains to be developed. In this proposal, we aim to simulate and study the fundamental properties of MR fluids and resulted self-assembled structures, and to also investigate new designs and optimum performance of prototype colloidal microdevices. In a broader context we propose new ways of fabricating microdevices without the use of lithography. We will consider two different classes of problems, the first involving tens of paramagnetic microspheres whereas the second involving thousands.To this end, we will employ a hierarchical simulation methodology that performs best in a certain range of parameters in terms of both accuracy and computational complexity. It will include new stochastic techniques to represent Brownian noise; geometric roughness or other uncertainties associated with the boundary conditions, particle size and interaction forces. Specifically, we will employ direct numerical simulations based on high-order discretizations and three different formulations: (1) the arbitrary Lagrangian Eulerian (ALE), (2) the distributed Lagrangian multiplier method (DLM), and (3) the force-coupling method (FCM). The stochastic contributions will be modeled spectrally using the recently developed generalized polynomial chaos method. The first primary goal of the project is to develop and evaluate the proposed simulation methodology for colloidal microdevices. We will then apply it to design micropumps, microvalves and other microdevices such as mixers and sorters, and optimize their performance. We will also investigate new concepts in fabricating three-dimensional microdevices. The second goal is to study the formation of self-assembled structures such as chains, or arrays of chains, from a suspension of micron-scale and sub-micron paramagnetic beads. Brownian motion plays a significant role for smaller particles, and the relative strength of the magnetic field is an underlying parameter, together with void fraction, channel geometry and any imposed fluid flow. The dynamic characteristics for time-varying magnetic fields or a nonuniform patterning of the field will be considered.The broader research impact of this work is great as it addresses for the first time simulation of magneto-rheological fluids in many different configurations. The possibility to target and precisely control the electro-optical as well as the mechanical properties of microstructures in a dynamic way using external fields will open new horizons in microfluidics research and will suggest new protocols in micro- and nanofabrication. Self-assembled magnetic matrices can find a large range of applications for the separation of DNA and other intermediate-size objects. Self-assembly of colloids can be used in a bottom-up approach to the fabrication of nanosystems and three-dimensional microsystems.The broader education impact is also great in that the proposed work will contribute to fundamental understanding of properties of MR fluids, self-assembly processes, and new nanotechnology applications. Self-assembly processes occur at all scales from molecular (crystals) to the planetary scale (weather system), and this universality will attract the curiosity of young minds. We expect to attract undergraduate and graduate students with diverse scientific backgrounds to be involved in this project. We also plan to inform the broader community through demonstrations and visualizations, and we will enhance Brown's ARTEMIS program in educating and inspiring young women on issues of nanotechnology and computational science.The previous NSF grant of the lead PI supported two African-American female PhD students.
摘要CTS-0326702 M。马克西,布朗大学超顺磁珠的控制操作可以导致自组装结构的形成,适用于微光学过滤器,DNA分离,或用于探索微和纳米纤维的新概念,特别是在三维空间。迄今为止的证据来自实验,其中具有微米尺寸珠粒的磁流变(MR)流体受到外部磁场的影响,形成具有规则分布和间距的柱状链。该过程是完全可逆的,并且已经发现可以避免与电流变流体相关的困难。通过实验室演示,最近已经取得了进展,即如何在微通道中操纵颗粒以进行细胞分选、细胞去除或制造新的泵、阀和混合器。虽然实验已经证明了MR流体的一些有趣特性,但其全部潜力仍有待开发。在这个提议中,我们的目标是模拟和研究MR流体的基本特性和由此产生的自组装结构,并研究原型胶体微器件的新设计和最佳性能。在更广泛的背景下,我们提出了新的方法来制造微器件,而不使用光刻。我们将考虑两类不同的问题,第一类涉及数十个顺磁性微球,而第二类涉及数千个。为此,我们将采用分层模拟方法,在一定的参数范围内,在精度和计算复杂度方面表现最好。它将包括新的随机技术来表示布朗噪声;几何粗糙度或与边界条件,颗粒大小和相互作用力相关的其他不确定性。具体而言,我们将采用基于高阶离散和三种不同公式的直接数值模拟:(1)任意拉格朗日欧拉(ALE),(2)分布式拉格朗日乘子法(DLM),(3)力耦合法(FCM)。随机贡献将使用最近开发的广义多项式混沌方法进行谱建模。该项目的第一个主要目标是开发和评估胶体微器件的模拟方法。然后,我们将应用它来设计微型泵,微型阀和其他微型设备,如混合器和分类器,并优化其性能。我们也将探讨制作三维微元件的新概念。第二个目标是研究从微米级和亚微米顺磁珠悬浮液中形成自组装结构,如链或链阵列。布朗运动对于较小的颗粒起着重要的作用,并且磁场的相对强度与空隙率、通道几何形状和任何施加的流体流动一起是基本参数。 动态特性随时间变化的磁场或非均匀图案的字段将被考虑。更广泛的研究影响这项工作是伟大的,因为它解决了第一次模拟磁流变流体在许多不同的配置。使用外部场以动态方式瞄准和精确控制微结构的电光以及机械性能的可能性将在微流体研究中开辟新的视野,并将提出微和纳米纤维的新协议。自组装磁性基质可以在DNA和其他中等大小物体的分离中找到广泛的应用。胶体的自组装可以用于自下而上的方法来制造纳米系统和三维微系统。更广泛的教育影响也很大,因为拟议的工作将有助于对MR流体的性质,自组装过程和新的纳米技术应用的基本理解。自组装过程发生在从分子(晶体)到行星尺度(天气系统)的所有尺度上,这种普遍性将吸引年轻人的好奇心。我们希望吸引具有不同科学背景的本科生和研究生参与这个项目。我们还计划通过演示和可视化来告知更广泛的社区,我们将加强布朗的ARTEMIS计划,在纳米技术和计算科学问题上教育和激励年轻女性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Maxey其他文献
Self-cleaning of hydrophobic rough surfaces by coalescence-induced wetting transition
通过聚结诱导润湿转变实现疏水粗糙表面的自清洁
- DOI:
10.1021/acs.langmuir.8b03664 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Kaixuan Zhang;Zhen Li;Martin Maxey;Shuo Chen;George Em Karniadakis - 通讯作者:
George Em Karniadakis
Tracking Bacterial Swimming Near a Solid or Air Surface
- DOI:
10.1016/j.bpj.2010.12.3452 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Liana Nisimova;James Bensson;Guanglai Li;Martin Maxey;Jay X. Tang - 通讯作者:
Jay X. Tang
Martin Maxey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Maxey', 18)}}的其他基金
Dispersion in Microfluidic Suspensions: Experiments and Numerical Simulations
微流体悬浮液中的分散:实验和数值模拟
- 批准号:
1133106 - 财政年份:2011
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
UBM-Group: Undergraduate Training and Research in Applied Mathematics and Biological Sciences
UBM-Group:应用数学和生物科学本科生培训和研究
- 批准号:
0734234 - 财政年份:2007
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
The Interactions of Finite-Sized Particles and Turbulence in Dispersed Two-Phase Flow
分散两相流中有限尺寸颗粒与湍流的相互作用
- 批准号:
9424169 - 财政年份:1995
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Nonliner Continuum Mechanics
数学科学:非线性连续介质力学问题
- 批准号:
9301262 - 财政年份:1993
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9205227 - 财政年份:1992
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Study of the Fallout and Dispersion of Particles in Turbulence and Random Flow Fields
湍流和随机流场中颗粒的沉降和弥散研究
- 批准号:
8310136 - 财政年份:1983
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
相似海外基金
Optimization of stabilized magnetorheological fluids for high precision polishing processes
用于高精度抛光工艺的稳定磁流变液的优化
- 批准号:
576774-2022 - 财政年份:2022
- 资助金额:
$ 30.8万 - 项目类别:
Alliance Grants
Investigation of Magnetorheological Fluids for Oil and Gas Well Application
磁流变液在油气井应用的研究
- 批准号:
515544-2017 - 财政年份:2017
- 资助金额:
$ 30.8万 - 项目类别:
Applied Research and Development Grants - Level 1
Development of nanoparticle-dispersed magnetorheological fluids for reversible and functional joining
开发用于可逆和功能连接的纳米颗粒分散磁流变液
- 批准号:
26420703 - 财政年份:2014
- 资助金额:
$ 30.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GOALI Collaborative Research: Engineering magnetorheological fluids by controlling nonmagnetic particle interactions
GOALI 合作研究:通过控制非磁性粒子相互作用来设计磁流变流体
- 批准号:
0932680 - 财政年份:2009
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
GOALI Collaborative Research: Engineering magnetorheological fluids by controlling nonmagnetic particle interactions
GOALI 合作研究:通过控制非磁性粒子相互作用来设计磁流变流体
- 批准号:
0932715 - 财政年份:2009
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
STTR Phase I: Compressible Magnetorheological Fluids
STTR 第一阶段:可压缩磁流变液
- 批准号:
0930398 - 财政年份:2009
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
RUI: Systematic Study of the Rheology and Sedimentation of Microwire-Based Magnetorheological Fluids
RUI:基于微丝的磁流变流体的流变学和沉降的系统研究
- 批准号:
0755696 - 财政年份:2008
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
STTR Phase I: Compressible Magnetorheological Fluids
STTR 第一阶段:可压缩磁流变液
- 批准号:
0637956 - 财政年份:2007
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
GOALI: Multiscale Modeling of Electro- and Magnetorheological Fluids
GOALI:电流变液和磁流变液的多尺度建模
- 批准号:
0424087 - 财政年份:2005
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
SBIR Phase I: Novel Magnetorheological Fluids with Nanosized Magnetic Particles
SBIR 第一阶段:具有纳米磁性颗粒的新型磁流变流体
- 批准号:
0127991 - 财政年份:2002
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant