CAREER: Efficient Simulation Methods for Colloidal Fluids

职业:胶体流体的有效模拟方法

基本信息

  • 批准号:
    0346914
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-03-01 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

This CAREER award supports computational and theoretical research on colloidal fluids and aims to bring new concepts to materials science education.The research component of the program aims to develop new methods that dramatically accelerate the simulation of thermodynamic and structural properties of colloidal fluids. Increased simulation efficiency will be exploited to eliminate a number of simplifications traditionally adopted in modeling colloidal fluids, including weak size asymmetry between the constituents, spherical particle shape, and isotropic potentials. This enables new physical insights in colloidal fluids. Effective interactions will be determined for colloidal systems that are currently inaccessible to simulation in order to uncover new mechanisms for colloidal stabilization. The effect of confined geometries and structured environments will be explored.The educational component of this program will broaden the materials science and engineering curriculum by introducing undergraduate students to simulation methods via hands-on computer experiments. The PI has initiated and developed a new course in which this approach will be used. The PI will collaborate with Clark Atlanta University (CAU) to enhance educational opportunities for minority students. The simulation course will also be taught on-line to students at CAU. One or two students will work with the PI as summer students, in order to gain research experience. The PI has extensive experience in high-school education and will develop and teach two interactive simulation modules, with an aim to introduce talented middle and high-school students to new areas in science and engineering. Both modules will be an integral part of yearly summer camps organized by the Women in Engineering program and the Office of ContinuingEngineering Education of the College of Engineering at the University of Illinois.Intellectual merit: The cluster methods at the heart of the proposed research have been the goal of intense investigation over nearly two decades. The associated algorithms will accelerate, by orders of magnitude, the numerical simulation of broad classes of soft condensed-matter and biologically relevant systems. Colloidal fluids constitute an important starting point for developing nanostructured materials; experimental progress critically depends on understanding effective interparticle forces and their effect on structure and stability of the fluid. The research aims to elucidate the role of these effective pair potentials and involves collaboration with experimentalists. Broader impacts: The PI's simulation methods will enable the computational study of large classes of complex fluids, including colloidal suspensions, aqueous solutions, and glass-forming liquids.The simulation course will effectively integrate research and education. Current methods will be brought into the classroom, enabling undergraduate students to independently apply them. Making the course available to CAU broadens their engineering program, increases opportunities for underrepresented groups, and helps to create a more diverse graduate population and work force. The modules for middle- and high-school students aim to generate interest among female and minority students in new disciplines in science and engineering.%%%This CAREER award supports computational and theoretical research on colloidal fluids and aims to bring new concepts to materials science education.The research component of the program aims to develop new methods that dramatically accelerate the simulation of thermodynamic and structural properties of colloidal fluids. Increased simulation efficiency will be exploited to eliminate a number of simplifications traditionally adopted in modeling colloidal fluids, including weak size asymmetry between the constituents, spherical particle shape, and isotropic potentials. This enables new physical insights in colloidal fluids. Effective interactions will be determined for colloidal systems that are currently inaccessible to simulation in order to uncover new mechanisms for colloidal stabilization. The effect of confined geometries and structured environments will be explored.The educational component of this program will broaden the materials science and engineering curriculum by introducing undergraduate students to simulation methods via hands-on computer experiments. The PI has initiated and developed a new course in which this approach will be used. The PI will collaborate with Clark Atlanta University (CAU) to enhance educational opportunities for minority students. The simulation course will also be taught on-line to students at CAU. One or two students will work with the PI as summer students, in order to gain research experience. The PI has extensive experience in high-school education and will develop and teach two interactive simulation modules, with an aim to introduce talented middle and high-school students to new areas in science and engineering. Both modules will be an integral part of yearly summer camps organized by the Women in Engineering program and the Office of ContinuingEngineering Education of the College of Engineering at the University of Illinois.Intellectual merit: The cluster methods at the heart of the proposed research have been the goal of intense investigation over nearly two decades. The associated algorithms will accelerate, by orders of magnitude, the numerical simulation of broad classes of soft condensed-matter and biologically relevant systems. Colloidal fluids constitute an important starting point for developing nanostructured materials; experimental progress critically depends on understanding effective interparticle forces and their effect on structure and stability of the fluid. The research aims to elucidate the role of these effective pair potentials and involves collaboration with experimentalists. Broader impacts: The PI's simulation methods will enable the computational study of large classes of complex fluids, including colloidal suspensions, aqueous solutions, and glass-forming liquids.The simulation course will effectively integrate research and education. Current methods will be brought into the classroom, enabling undergraduate students to independently apply them. Making the course available to CAU broadens their engineering program, increases opportunities for underrepresented groups, and helps to create a more diverse graduate population and work force. The modules for middle- and high-school students aim to generate interest among female and minority students in new disciplines in science and engineering.***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Luijten其他文献

Monte Carlo simulation of spin models with long-range interactions
具有长程相互作用的自旋模型的蒙特卡罗模拟
  • DOI:
    10.1007/978-3-642-59689-6_7
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Luijten
  • 通讯作者:
    Erik Luijten
Cluster Monte Carlo: Extending the range
蒙特卡罗集群:扩展范围
  • DOI:
    10.1016/s0010-4655(02)00204-7
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Blöte;H. Blöte;J. R. Heringa;Erik Luijten
  • 通讯作者:
    Erik Luijten
Implementation of an F ?> -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data
对 Virgo VSR1 数据中的连续引力波进行 F ?> 统计全天搜索的实现
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Aasi;B. Abbott;R. Abbott;T. Abbott;M. Abernathy;T. Accadia;F. Acernese;K. Ackley;C. Adams;T. Adams;P. Addesso;R. Adhikari;C. Affeldt;M. Agathos;N. Aggarwal;O. Aguiar;A. Ain;P. Ajith;A. Alemic;B. Allen;A. Allocca;D. Amariutei;M. Andersen;R. Anderson;S. Anderson;W. Anderson;K. Arai;M. Araya;C. Arceneaux;J. Areeda;S. Aston;P. Astone;P. Aufmuth;C. Aulbert;L. Austin;B. Aylott;S. Babak;P. Baker;G. Ballardin;S. Ballmer;J. Barayoga;M. Barbet;B. Barish;D. Barker;F. Barone;B. Barr;L. Barsotti;M. Barsuglia;M. Barton;I. Bartos;R. Bassiri;A. Basti;J. Batch;J. Bauchrowitz;T. Bauer;B. Behnke;M. Bejger;M. Beker;C. Belczynski;A. Bell;C. Bell;G. Bergmann;D. Bersanetti;A. Bertolini;J. Betzwieser;P. Beyersdorf;I. Bilenko;G. Billingsley;J. Birch;S. Biscans;M. Bitossi;M. Bizouard;E. Black;J. K. Blackburn;L. Blackburn;D. Blair;S. Bloemen;M. Blom;O. Bock;T. Bodiya;M. Boer;G. Bogaert;C. Bogan;C. Bond;F. Bondu;L. Bonelli;R. Bonnand;R. Bork;M. Born;K. Borkowski;V. Boschi;S. Bose;L. Bosi;C. Bradaschia;P. Brady;V. Braginsky;M. Branchesi;J. Brau;T. Briant;D. Bridges;A. Brillet;M. Brinkmann;V. Brisson;A. Brooks;D. Brown;D. Brown;F. Bruckner;S. Buchman;T. Bulik;H. Bulten;A. Buonanno;R. Burman;D. Buskulic;C. Buy;L. Cadonati;G. Cagnoli;J. C. Bustillo;E. Calloni;J. Camp;P. Campsie;K. Cannon;B. Canuel;J. Cao;C. Capano;F. Carbognani;L. Carbone;S. Caride;A. Castiglia;S. Caudill;M. Cavaglià;F. Cavalier;R. Cavalieri;C. Celerier;G. Cella;C. Cepeda;E. Cesarini;R. Chakraborty;T. Chalermsongsak;S. Chamberlin;S. Chao;P. Charlton;É. Chassande;X. Chen;Y. Chen;A. Chincarini;A. Chiummo;H. Cho;J. Chow;N. Christensen;Q. Chu;S. Chua;S. Chung;G. Ciani;F. Clara;J. Clark;F. Cleva;E. Coccia;P. Cohadon;A. Colla;C. Collette;M. Colombini;L. Cominsky;M. Constancio;A. Conte;D. Cook;T. Corbitt;M. Cordier;N. Cornish;A. Corpuz;A. Corsi;C. Costa;M. Coughlin;S. Coughlin;J. Coulon;S. Countryman;P. Couvares;D. Coward;M. Cowart;D. Coyne;R. Coyne;K. Craig;J. Creighton;S. Crowder;A. Cumming;L. Cunningham;E. Cuoco;K. Dahl;T. D. Canton;M. Damjanic;S. Danilishin;S. D’Antonio;K. Danzmann;V. Dattilo;H. Daveloza;M. Davier;G. Davies;E. Daw;R. Day;T. Dayanga;G. Debreczeni;J. Degallaix;S. Del'eglise;W. D. Pozzo;T. Denker;T. Dent;H. Dereli;V. Dergachev;R. Rosa;R. Derosa;R. DeSalvo;S. Dhurandhar;M. D'iaz;L. Fiore;A. Lieto;I. Palma;A. Virgilio;A. Donath;F. Donovan;K. Dooley;S. Doravari;O. Dorosh;S. Dossa;R. Douglas;T. Downes;M. Drago;R. Drever;J. Driggers;Z. Du;S. Dwyer;T. Eberle;T. Edo;M. Edwards;A. Effler;H. Eggenstein;P. Ehrens;J. Eichholz;S. Eikenberry;G. EndrHoczi;R. Essick;T. Etzel;M. Evans;T. Evans;M. Factourovich;V. Fafone;S. Fairhurst;Q. Fang;S. Farinon;B. Farr;W. Farr;Marc Favata;H. Fehrmann;M. Fejer;D. Feldbaum;F. Feroz;I. Ferrante;F. Ferrini;F. Fidecaro;L. Finn;I. Fiori;R. Fisher;R. Flaminio;J. Fournier;S. Franco;S. Frasca;F. Frasconi;M. Frede;Z. Frei;A. Freise;R. Frey;T. Fricke;P. Fritschel;V. Frolov;P. Fulda;M. Fyffe;J. Gair;L. Gammaitoni;S. Gaonkar;F. Garufi;N. Gehrels;G. Gemme;E. Génin;A. Gennai;S. Ghosh;J. Giaime;K. Giardina;A. Giazotto;C. Gill;J. Gleason;E. Goetz;R. Goetz;L. Gondán;G. Gonz'alez;N. Gordon;M. Gorodetsky;S. Gossan;S. Gossler;R. Gouaty;C. Graf;P. Graff;M. Granata;A. Grant;S. Gras;C. Gray;R. Greenhalgh;A. Gretarsson;P. Groot;H. Grote;K. Grover;S. Grunewald;G. Guidi;C. Guido;K. Gushwa;E. Gustafson;R. Gustafson;D. Hammer;G. Hammond;M. Hanke;J. Hanks;C. Hanna;J. Hanson;J. Harms;G. Harry;I. Harry;E. Harstad;M. Hart;M. Hartman;C. Haster;K. Haughian;A. Heidmann;M. Heintze;H. Heitmann;P. Hello;G. Hemming;M. Hendry;I. Heng;A. Heptonstall;M. Heurs;M. Hewitson;S. Hild;D. Hoak;K. Hodge;K. Holt;S. Hooper;P. Hopkins;D. Hosken;J. Hough;E. Howell;Y. Hu;E. Huerta;B. Hughey;S. Husa;S. Huttner;M. Huynh;T. Huynh;D. Ingram;R. Inta;T. Isogai;A. Ivanov;B. Iyer;K. Izumi;M. Jacobson;E. James;H. Jang;P. Jaranowski;Y. Ji;F. Jim'enez;W. Johnson;D. Jones;R. Jones;R. Jonker;L. Ju;K. Haris;P. Kalmus;V. Kalogera;S. Kandhasamy;G. Kang;J. Kanner;J. Karlén;M. Kasprzack;E. Katsavounidis;W. Katzman;H. Kaufer;K. Kawabe;F. Kawazoe;F. K'ef'elian;G. M. Keiser;D. Keitel;D. Kelley;W. Kells;A. Khalaidovski;F. Khalili;E. Khazanov;C. Kim;K. Kim;N. Kim;N. Kim;Y. Kim;E. King;P. King;D. Kinzel;J. Kissel;S. Klimenko;J. Kline;S. Koehlenbeck;K. Kokeyama;V. Kondrashov;S. Koranda;W. Korth;I. Kowalska;D. Kozak;A. Kremin;V. Kringel;B. Krishnan;A. Kr'olak;G. Kuehn;A. Kumar;P. Kumar;R. Kumar;L. Kuo;A. Kutynia;P. Kwee;M. Landry;B. Lantz;S. Larson;P. Lasky;C. Lawrie;A. Lazzarini;C. Lazzaro;P. Leaci;S. Leavey;E. Lebigot;C. Lee;H. Lee;H. Lee;J. Lee;M. Leonardi;J. Leong;A. L. Roux;N. Leroy;N. Letendre;Y. Levin;B. Levine;J. Lewis;T. G. F. Li;K. Libbrecht;A. Libson;A. Lin;T. Littenberg;V. Litvine;N. Lockerbie;V. Lockett;D. Lodhia;K. Loew;J. Logue;A. Lombardi;M. Lorenzini;V. Loriette;M. Lormand;G. Losurdo;J. Lough;M. Lubinski;H. Luck;Erik Luijten;A. Lundgren;R. Lynch;Y. Ma;J. Macarthur;E. Macdonald;T. Macdonald;B. Machenschalk;M. Macinnis;D. Macleod;F. Magaña;M. Mageswaran;C. Maglione;K. Mailand;E. Majorana;I. Maksimovic;V. Malvezzi;N. Man;G. Manca;I. Mandel;V. Mandic;V. Mangano;N. Mangini;M. Mantovani;F. Marchesoni;F. Marion;S. M'arka;Z. M'arka;A. Markosyan;E. Maros;J. Marque;F. Martelli;I. Martin;R. Martin;L. Martinelli;D. Martynov;J. Marx;K. Mason;A. Masserot;T. Massinger;F. Matichard;L. Matone;R. Matzner;N. Mavalvala;N. Mazumder;G. Mazzolo;R. McCarthy;D. McClelland;S. Mcguire;G. Mcintyre;J. McIver;K. McLin;D. Meacher;G. Meadors;M. Mehmet;J. Meidam;M. Meinders;A. Melatos;G. Mendell;R. Mercer;S. Meshkov;C. Messenger;P. Meyers;H. Miao;C. Michel;E. Mikhailov;L. Milano;S. Milde;J. Miller;Y. Minenkov;C. Mingarelli;C. Mishra;S. Mitra;V. Mitrofanov;G. Mitselmakher;R. Mittleman;B. Moe;P. Moesta;M. Mohan;S. Mohapatra;D. Moraru;G. Moreno;N. Morgado;S. Morriss;K. Mossavi;B. Mours;C. Mow;C. Mueller;G. Mueller;S. Mukherjee;A. Mullavey;J. Munch;D. Murphy;P. Murray;A. Mytidis;M. Nagy;D. Kumar;I. Nardecchia;L. Naticchioni;R. Nayak;V. Necula;G. Nelemans;I. Neri;M. Neri;G. Newton;T. Nguyen;A. Nitz;F. Nocera;D. Nolting;M. Normandin;L. Nuttall;E. Ochsner;J. O'Dell;E. Oelker;J. Oh;S. Oh;F. Ohme;P. Oppermann;B. O'reilly;R. O’Shaughnessy;C. Osthelder;D. Ottaway;R. Ottens;H. Overmier;B. Owen;C. Padilla;A. Pai;O. Palashov;C. Palomba;H. Pan;Y. Pan;C. Pankow;F. Paoletti;R. Paoletti;M. Papa;H. Paris;A. Pasqualetti;R. Passaquieti;D. Passuello;M. Pedraza;S. Penn;A. Perreca;M. Phelps;M. Pichot;M. Pickenpack;F. Piergiovanni;V. Pierro;M. Pietka;L. Pinard;I. Pinto;M. Pitkin;J. Poeld;R. Poggiani;A. Poteomkin;J. Powell;J. Prasad;S. Premachandra;T. Prestegard;L. Price;M. Prijatelj;S. Privitera;G. Prodi;L. Prokhorov;O. Puncken;M. Punturo;P. Puppo;J. Qin;V. Quetschke;E. Quintero;G. Quiroga;R. Quitzow;F. Raab;D. Rabeling;I. R'acz;H. Radkins;P. Raffai;S. Raja;G. Rajalakshmi;M. Rakhmanov;C. Ramet;K. Ramirez;P. Rapagnani;V. Raymond;V. Re;J. Read;C. Reed;T. Regimbau;S. Reid;D. Reitze;E. Rhoades;F. Ricci;K. Riles;N. Robertson;F. Robinet;A. Rocchi;M. Rodruck;L. Rolland;J. Rollins;R. Romano;G. Romanov;J. Romie;D. Rosi'nska;S. Rowan;A. Rudiger;P. Ruggi;K. Ryan;F. Salemi;L. Sammut;V. Sandberg;J. Sanders;V. Sannibale;I. Santiago;E. Saracco;B. Sassolas;B. Sathyaprakash;P. Saulson;R. Savage;J. Scheuer;R. Schilling;R. Schnabel;R. Schofield;E. Schreiber;D. Schuette;B. Schutz;J. Scott;S. Scott;D. Sellers;A. Sengupta;D. Sentenac;V. Sequino;A. Sergeev;D. Shaddock;S. Shah;M. Shahriar;M. Shaltev;B. Shapiro;P. Shawhan;D. Shoemaker;T. Sidery;K. Siellez;X. Siemens;D. Sigg;D. Simakov;A. Singer;L. Singer;R. Singh;A. Sintes;B. Slagmolen;J. Slutsky;J. R. Smith;M. Smith;R. Smith;N. Smith;E. Son;B. Sorazu;T. Souradeep;L. Sperandio;A. Staley;J. Stebbins;J. Steinlechner;S. Steinlechner;B. Stephens;S. Steplewski;S. Stevenson;R. Stone;D. Stops;K. Strain;N. Straniero;S. Strigin;R. Sturani;A. Stuver;T. Summerscales;S. Susmithan;P. Sutton;B. Swinkels;M. Tacca;D. Talukder;D. Tanner;S. Tarabrin;R. Taylor;A. Braack;M. Thirugnanasambandam;M. Thomas;P. Thomas;K. Thorne;K. Thorne;E. Thrane;V. Tiwari;K. Tokmakov;C. Tomlinson;A. Toncelli;M. Tonelli;O. Torre;C. Torres;C. Torrie;F. Travasso;G. Traylor;M. Tse;D. Ugolini;C. Unnikrishnan;A. Urban;K. Urbanek;H. Vahlbruch;G. Vajente;G. Valdes;M. Vallisneri;J. Brand;C. Broeck;S. V. D. Putten;M. V. D. Sluys;J. V. Heijningen;A. V. Veggel;S. Vass;M. Vas'uth;R. Vaulin;A. Vecchio;G. Vedovato;J. Veitch;P. Veitch;K. Venkateswara;D. Verkindt;S. Verma;F. Vetrano;A. Vicer'e;R. Vincent;J. Vinet;S. Vitale;T. Vo;H. Vocca;C. Vorvick;W. Vousden;S. Vyachanin;A. Wade;L. Wade;M. Wade;M. Walker;L. Wallace;M. Wang;X. Wang;R. Ward;M. Was;B. Weaver;L.;M. Weinert;A. Weinstein;R. Weiss;T. Welborn;L. Wen;P. Wessels;M. West;T. Westphal;K. Wette;J. Whelan;D. White;B. Whiting;K. Wiesner;C. Wilkinson;K. Williams;L. Williams;R. Williams;T. Williams;A. Williamson;J. Willis;B. Willke;M. Wimmer;W. Winkler;C. Wipf;A. Wiseman;H. Wittel;G. Woan;J. Worden;J. Yablon;I. Yakushin;H. Yamamoto;C. Yancey;H. Yang;Z. Yang;S. Yoshida;M. Yvert;A. Zadro.zny;M. Zanolin;J. Zendri;Fan Zhang;L. Zhang;C. Zhao;X. Zhu;M. Zucker;S. Zuraw;J. Zweizig
  • 通讯作者:
    J. Zweizig
On quantum effects near the liquid–vapor transition in helium
氦气液汽转变附近的量子效应
  • DOI:
    10.1063/1.1429957
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Muser;Erik Luijten
  • 通讯作者:
    Erik Luijten
Dynamics and structure of colloidal aggregates under microchannel flow.
微通道流动下胶体聚集体的动力学和结构。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Ming Han;J. Whitmer;Erik Luijten
  • 通讯作者:
    Erik Luijten

Erik Luijten的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Luijten', 18)}}的其他基金

Advanced Algorithms for Colloids with Induced Many-Body Interactions
具有诱导多体相互作用的胶体高级算法
  • 批准号:
    1610796
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dielectric Effects in Dynamical Self-Assembly of Anisotropic Colloids
各向异性胶体动态自组装的介电效应
  • 批准号:
    1310211
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Thermodynamics and Hydrodynamics of Anisotropic Colloids
各向异性胶体的热力学和流体力学
  • 批准号:
    1006430
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
  • 批准号:
    2321329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X022595/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X024881/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Efficient cutting and soft tissue simulation for virtual surgery
虚拟手术的高效切割和软组织模拟
  • 批准号:
    570702-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Efficient stochastic simulation of reaction-diffusion systems
反应扩散系统的高效随机模拟
  • 批准号:
    548090-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Next Generation Machining Simulation Technologies for Complete and Efficient Process Validation
用于完整、高效工艺验证的下一代加工仿真技术
  • 批准号:
    RGPIN-2020-06402
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
High-definition Virtualization of sediment disaster by highly accurate and efficient numerical simulation
高精度、高效数值模拟,高清虚拟泥沙灾害
  • 批准号:
    22H00507
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Next Generation Machining Simulation Technologies for Complete and Efficient Process Validation
用于完整、高效工艺验证的下一代加工仿真技术
  • 批准号:
    RGPIN-2020-06402
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了