CAREER: Discriminative and Generative Machine Learning with Applications in Tracking and Gesture Recogniton

职业:判别式和生成式机器学习及其在跟踪和手势识别中的应用

基本信息

  • 批准号:
    0347499
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-02-15 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop a tighter integration of generative (e.g., Bayesian networks) and discriminative (e.g., support vector machines) machine learning. These two types of learning are typically not integrated in current practice and are often seen as competing approaches; however, such integration is crucial in complex multi-disciplinary domains, such as vision, speech, and computational biology, where scientists have real expertise and exploitable knowledge about elaborate systems yet also need machine learning to achieve optimal performance for specific tasks. This project's integrated generative-discriminative framework will allow practitioners to flexibly design and structure a given learning problem using generative tools like Bayesian networks and then to maximize the performance of these models using discriminative methods like maximum entropy and probabilistic kernels. This framework will be used in computer vision tracking applications and in classification of gestures. In a laparoscopic robotic surgery platform, the methods will be used for classifying surgical drill movements and predicting surgeon dexterity level. The project's unified approach will be used to create a more comprehensive machine learning course experience for students, complete with online class materials, visual demonstrations and software toolkits.
该项目旨在开发一个更紧密的集成生成(例如,贝叶斯网络)和判别(例如,支持向量机)机器学习。这两种类型的学习在当前的实践中通常没有整合,并且通常被视为相互竞争的方法;然而,这种整合在复杂的多学科领域中至关重要,例如视觉,语音和计算生物学,科学家拥有关于复杂系统的真实的专业知识和可利用的知识,但也需要机器学习来实现特定任务的最佳性能。该项目的综合生成判别框架将允许从业者使用贝叶斯网络等生成工具灵活地设计和构建给定的学习问题,然后使用最大熵和概率内核等判别方法最大化这些模型的性能。该框架将用于计算机视觉跟踪应用和手势分类。在腹腔镜机器人手术平台中,该方法将用于对手术钻运动进行分类并预测外科医生的灵活性水平。该项目的统一方法将用于为学生创建更全面的机器学习课程体验,包括在线课程材料,视觉演示和软件工具包。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony Jebara其他文献

Kernelizing Sorting, Permutation, and Alignment for Minimum Volume PCA
  • DOI:
    10.1007/978-3-540-27819-1_42
  • 发表时间:
    2004-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tony Jebara
  • 通讯作者:
    Tony Jebara
Robust Algorithms for Capturing Population Dynamics and Transport in Oceanic Variables along Drifter Trajectories using Linear Dynamical Systems with Latent Variables
使用具有潜在变量的线性动力系统捕获沿漂流者轨迹的海洋变量的种群动态和传输的鲁棒算法
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Yan;Tony Jebara;R. Abernathey;J. Goes;H. Gomes
  • 通讯作者:
    H. Gomes
Modularity and Specialized Learning: Reexamining Behavior-Based Artificial Intelligence
模块化和专业学习:重新审视基于行为的人工智能
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Bryson;J. Triesch;Tony Jebara
  • 通讯作者:
    Tony Jebara
Images as bags of pixels
图像作为像素袋
Multitask Sparsity via Maximum Entropy Discrimination
  • DOI:
    10.5555/1953048.1953052
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tony Jebara
  • 通讯作者:
    Tony Jebara

Tony Jebara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony Jebara', 18)}}的其他基金

III: Small: Collaborative Research: Approximate Learning and Inference in Graphical Models
III:小:协作研究:图模型中的近似学习和推理
  • 批准号:
    1526914
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: New Optimization Methods for Machine Learning
EAGER:机器学习的新优化方法
  • 批准号:
    1451500
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RI: Small: Learning and Inference with Perfect Graphs
RI:小:通过完美图进行学习和推理
  • 批准号:
    1117631
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Representation Learning: Transformations and Kernels for Collections of Tuples
ITR:表示学习:元组集合的转换和内核
  • 批准号:
    0312690
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Combining generative and discriminative strategies to facilitate efficient and effective learning from big data
结合生成策略和判别策略,促进大数据高效学习
  • 批准号:
    DP140100087
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Hybrid Generative/ Discriminative Approaches for Modeling and Analyzing Social Network
用于建模和分析社交网络的混合生成/判别方法
  • 批准号:
    409160-2011
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybrid Generative/ Discriminative Approaches for Modeling and Analyzing Social Network
用于建模和分析社交网络的混合生成/判别方法
  • 批准号:
    409160-2011
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Generative-discriminative hybrids for disease prediction and cell communication modelling
用于疾病预测和细胞通讯建模的生成判别混合体
  • 批准号:
    G0701858/1
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Image Parsing: Integrating Generative and Discriminative Methods
图像解析:集成生成方法和判别方法
  • 批准号:
    0413214
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Generative and Discriminative Methods for Gene Finding and Functional Annotation
基因查找和功能注释的生成和判别方法
  • 批准号:
    0243257
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了