Generative-discriminative hybrids for disease prediction and cell communication modelling

用于疾病预测和细胞通讯建模的生成判别混合体

基本信息

  • 批准号:
    G0701858/1
  • 负责人:
  • 金额:
    $ 12.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

We aim to investigate new advances and expertise in machine learning to improve the reliability of disease prediction from genomic and proteomic data, and to enable answering novel biological questions regarding cell-cell communication mechanisms that underlie the development of disease.Statistical machine learning methods have already been shown to hold a lot of promise towards these goals in principle. However, high-throughput technologies result in increasingly high dimensional data, while the number of samples remains limited. The implications of these extreme conditions are largely overlooked by the existing state of the art. In addition, new biological questions are being asked that currently existing techniques are unable to tackle.Recent results in machine learning make it possible to address these issues. In particular, hybridizing generative and discriminative models may blend the benefits of both and may reduce the required sample size. An informed choice of distance functions and data models may mitigate the curse of dimensionality. Adapting certain techniques previously developed for social network inference may provide the required modelling power for inferring cell-cell communication mechanisms.By exploring the potential of these techniques, we hope to pave the way towards creating novel and improved computational methods for life scientists.
我们的目标是研究机器学习的新进展和专业知识,以提高从基因组和蛋白质组数据预测疾病的可靠性,并能够回答有关疾病发展的细胞间通讯机制的新生物学问题。统计机器学习方法已经被证明在原则上对这些目标有很大的希望。然而,高通量技术导致越来越高维的数据,而样本的数量仍然有限。这些极端条件的影响在很大程度上被现有技术所忽视。此外,目前现有技术无法解决的新生物学问题正在被提出。机器学习的最新成果使解决这些问题成为可能。特别是,混合生成和判别模型可以混合两者的好处,并可以减少所需的样本量。距离函数和数据模型的明智选择可以减轻维度灾难。调整以前开发的社会网络推理的某些技术可能提供所需的建模能力,推断细胞间的通信mechanism.By探索这些技术的潜力,我们希望为生命科学家创造新的和改进的计算方法铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ata Kaban其他文献

Ata Kaban的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ata Kaban', 18)}}的其他基金

FORGING: Fortuitous Geometries and Compressive Learning
锻造:偶然几何形状和压缩学习
  • 批准号:
    EP/P004245/1
  • 财政年份:
    2017
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Fellowship

相似海外基金

Development of Discriminative Pattern Mining Techniques as a Foundation of Human-Centric Machine Learning
判别模式挖掘技术的发展作为以人为中心的机器学习的基础
  • 批准号:
    20K11941
  • 财政年份:
    2020
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Construction of a computational model to deal with the cocktail-party problem for intelligent speech interface
智能语音界面鸡尾酒会问题计算模型的构建
  • 批准号:
    19K12035
  • 财政年份:
    2019
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Performance improvement of discriminative distributed Brillouin fiber sensing of temperature/strain
判别式分布式布里渊光纤温度/应变传感性能改进
  • 批准号:
    19K14999
  • 财政年份:
    2019
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of discriminative method for distinguishing between bleeding and thrombotic tendency in cases with prolonged aPTT
开发区分 aPTT 延长病例出血和血栓倾向的判别方法
  • 批准号:
    19K16962
  • 财政年份:
    2019
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Prognostic Value of a Prospective, Longitudinal Evaluation of Body Composition in Patients with Cirrhosis Evaluated for Liver Transplantation
进行肝移植评估的肝硬化患者身体成分的前瞻性纵向评估的预后价值
  • 批准号:
    399643
  • 财政年份:
    2018
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Fellowship Programs
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Large-Scale Discriminative Modelling for Data-Intensive Speech and Language Processing
数据密集型语音和语言处理的大规模判别建模
  • 批准号:
    261540-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Discovery Grants Program - Individual
How do we learn? Combining generative and discriminative models for visual and audio perception.
我们如何学习?
  • 批准号:
    488062-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RI: Small: Using Automatically Generated Paraphrases and Discriminative ASR Training to Author Robust Question-Answering Dialogue Systems
RI:小型:使用自动生成的释义和判别性 ASR 训练来编写强大的问答对话系统
  • 批准号:
    1618336
  • 财政年份:
    2016
  • 资助金额:
    $ 12.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了